Effects of Pituitary Mass Lesions on the Visual Apparatus


A variety of mass lesions may arise within the sella. In addition to benign pituitary adenomas, which account for approximately 90% of mass lesions in surgical series, there are a large number of pathologic sellar mass lesions. These include benign (craniopharyngioma, meningioma) and malignant (chondrosarcoma, lymphoma, metastases, or the exceedingly rare primary pituitary carcinoma) neoplasms, cystic lesions (Rathke’s cleft cyst; arachnoid, dermoid, and epidermoid cyst), vascular pathologies (aneurysms, arteriovenous malformations), inflammatory lesions (primary or secondary hypophysitis), infection, or pituitary hyperplasia.


Mass lesions extending superiorly from the sella often impinge on the optic chiasm, which is generally located directly above the diaphragma sellae (in approximately 90% of individuals). Early abnormalities that occur as a result of chiasmatic compression include loss of color perception as a result of optic neuropathy, which can be documented using standard Ishihara chart testing, as well as variable loss of peripheral (temporal) field vision. Among patients with mass lesions growing from the sella, vision is generally lost first in either or both superior temporal quadrants. In contrast, mass lesions arising at the base of the hypothalamus, which compress the optic chiasm from above, may lead to early loss of vision in the inferior temporal quadrants.


Compression of the prechiasmatic optic nerves may lead to ipsilateral optic neuropathy, giving rise to a central scotoma. Lesions that compress the anterior portion of the chiasm on one side may give rise to ipsilateral optic neuropathy (central scotoma) and loss of peripheral vision in the contralateral superior temporal quadrant, a constellation termed “junctional scotoma.” More posteriorly located lesions may impinge upon one of the optic tracts, leading to contralateral homonymous hemianopsia.


Preliminary visual field testing may be conducted using bedside confrontation testing, but definitive evaluation of peripheral vision requires formal perimetry, using either an automated (Humphrey) or manual (Goldmann) method. Primary optic atrophy is present in cases of long-standing nerve fiber compression. Papilledema may rarely occur in patients with very large tumors extending toward the third ventricle, causing obstructive hydrocephalus. Consultation with an experienced neuro-ophthalmologist is advised for patients with mass lesions abutting or compressing the optic apparatus. Recovery of visual function occurs with relief of compression of the optic apparatus in most patients (approximately 70% to 75% of cases). However, the likelihood and extent of visual recovery are generally higher with shorter duration of nerve fiber compression. Thus early diagnosis and prompt decompression (generally via surgery, but also medical therapy in patients with prolactin-secreting adenomas) are very important to optimize visual outcomes in these patients.


Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Sep 2, 2016 | Posted by in NEUROLOGY | Comments Off on Effects of Pituitary Mass Lesions on the Visual Apparatus

Full access? Get Clinical Tree

Get Clinical Tree app for offline access