Pathophysiology of Ischemic Stroke


Type of infarct

Diagnosis

Cerebral infarction

If a CT scan performed within 28 days of symptom onset shows an area of low attenuation, no relevant abnormality or an area of irregular high attenuation within a larger area of low attenuation (i.e., an area of hemorrhagic infarction) or if a necropsy examination shows an area of cerebral infarction (pale or hemorrhagic) in a region compatible with the clinical signs and symptoms

Lacunar infarct (LACI)

One of the four classic clinical lacunar syndromes. Patients with faciobrachial or brachiocrural deficits are included, but more restricted deficits are not

Total anterior circulation infarct (TACI)

Combination of new higher cerebral dysfunction (e.g., dysphasia, dyscalculia, visuospatial disorders), homonymous visual field defect, and ipsilateral motor and/or sensory deficit of at least two areas of the face, arm, and leg. If the conscious level is impaired and formal testing of higher cerebral function or the visual fields is not possible, a deficit is assumed

Partial anterior circulation infarct (PACI)

Only two of the three components of the TACI syndrome, with higher dysfunction alone or with a motor/sensory deficit more restricted than those classified as LACI (e.g., confined to one limb or to the face and hand but not the whole arm)

Posterior circulation infarcts (POCI)

Any of the following: ipsilateral cranial nerve palsy with contralateral motor and/or sensory deficit, bilateral motor and/or sensory deficit, disorder of conjugate eye movement, cerebellar dysfunction without ipsilateral long-tract deficit (i.e., ataxic hemiparesis), or isolated homonymous visual field defect


OCSP Oxfordshire Community Stroke Project





1.1.3 Trial of ORG 10172 in Acute Stroke Treatment (TOAST) Subtype Classification


Since 1993, almost all clinical researchers in the world have used the classification system suggested by the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) clinical researchers (Table 1.2). The original purpose of this classification system was to analyze the effect of danaparoid in the subtypes of strokes. The TOAST researchers classified stroke initially into 11 categories, but they later compressed these categories into five groups. This is a classification system whose internal validity can be increased if the researchers follow the pre-planned algorithm, and accuracy in diagnosis may improve if there are more than two evaluators. Lacunar infarction is defined by the clinical symptoms and the size of the ischemic stroke. In this case, if significant stenosis in the M1 portion of middle cerebral artery is not detected because thorough examination of the cerebral artery has not been done, the ischemic stroke caused by large-artery atherothrombosis is likely to be misclassified as lacunar infarction. In addition, the causes of cardioembolism consist of high- and medium-risk factors, and among the medium-risk factors are many factors that are too ambiguous to be considered a cause of cardioembolism, such as patent foramen ovale. Therefore, there is a possibility for a stroke patient with a medium-risk factor, whose intracranial and extracranial arteries had not been thoroughly examined, to be misclassified as cardioembolism. Moreover, the cases of ischemic stroke with an undetermined cause include both the cases where the stroke has two or more distinct causes or where the cause of the stroke is not found even after sufficient examination. For example, in a case where the patient has more than 50% vascular stenosis and atrial fibrillation, the stroke is in principle classified as ischemic stroke with an undetermined cause. Even all the cases where the physician or researcher can make a diagnosis based on a strong hunch are in principle classified as ischemic stroke with an undetermined cause, and consequently, the proportion of cases of ischemic stroke with an undetermined cause is exaggerated.


Table 1.2
TOAST classification

























Type of infarct

Diagnosis

Large-artery atherosclerosis

Clinical evidence of cortical, subcortical, brain stem, or cerebellar dysfunction with more than 50% lesion or occlusion in an extracranial or intracranial vessel in the distribution of an infarct larger than 1.5 cm by CT or MRI. This diagnosis cannot be made if arterial studies show no evidence of pathology or if there is reasonable suggestion by history or studies that another mechanism is possible

Cardioembolism (high risk/medium risk)

Clinical evidence of cortical, subcortical, brain stem, or cerebellar dysfunction with a lesion size larger than 1.5 cm on CT or MRI and the presence of at least one high-risk (e.g., atrial fibrillation or mechanical heart valve) or medium-risk cardiac pathology (e.g., lone atrial fibrillation or patent foramen ovale) on diagnostic studies, electrocardiogram, rhythm strip, 24-h cardiac monitoring, and transthoracic or transesophageal echocardiography. Evidence of transient ischemic attacks or strokes in more than one vascular territory or of systemic emboli supports the diagnosis. Finally, other categories (large artery, small artery) must be excluded

Small-vessel occlusion (lacunar)

A lacunar syndrome (pure motor, sensorimotor, pure sensory, ataxia hemiparesis, dysarthria-clumsy hand) with normal CT or MRI or a lesion smaller than 1.5 cm on CT or MRI in the territories supplied by small-vessel penetrators. Large-artery and cardiac sources must be excluded

Stroke of other determined etiologies

Stroke caused by nonatherosclerotic vasculopathies, hypercoagulable states, or hematologic disorders and other rare causes of stroke after diagnostic testing. Other categories must be excluded

Stroke of undetermined etiology (cryptogenic)

This diagnosis is made if two or more etiologies of stroke are possible, a complete evaluation reveals no possible source, or the patient had an incomplete evaluation


TOAST Trial of Org 10172 in Acute Stroke Treatment


1.1.4 The Path of Stroke Classification


Stroke classification does not exist simply for clinical research purposes. It should be well applied to usual patient care, and well used for patients’ early diagnosis, for prognosis determination, and for the medication for stroke prevention. The classification made using an expensive equipment or examination method may pose a problem in the country’s public health, but if classification is simply made based only on the clinical findings and CT image obtained, there are bound to be too many errors. Each country needs to establish the optimal classification system employing appropriate tests that fit the public health characteristics of the patients in the country.



1.2 Thrombus Formation According to the Stroke Etiology


Occlusion of the blood vessels, a cause of ischemic stroke, is usually caused by a thrombus (or a blood clot). Therefore, the core of stroke pathophysiology is to understand the process of thrombus formation. According to the ischemic stroke classification, a thrombus with a different appearance may develop. Thus, the basic process of thrombus generation must be understood. Thrombi largely consist of two components as an end product of the blood coagulation process: a platelet plug and a fibrin protein cross-linked like a mesh. In general, the condition in which thrombi develop is known as “Virchow’s triad,” and its description is as follows: (1) damage in the vascular endothelial cell (trauma or arteriosclerosis), (2) abnormal blood flow (loss of laminar flow due to blood stasis in the vein or turbulence in the artery), and (3) hypercoagulability state. The thrombi caused by these reasons are classified into the following depending on the component: white thrombus, whose major components are platelets, or red thrombus, whose major components are red blood cells (Fig. 1.1). Both types of thrombus may develop in ischemic stroke. Depending on the type of thrombus that is the major cause of stroke, the patient’s early progression, the effect on the acute-phase treatment, the prognosis, and the secondary prevention vary. Thus, most of all, it is important to identify the onset mechanism, components, and important factors of the thrombus for the appropriate diagnosis and treatment of ischemic stroke patients.

A418146_1_En_1_Fig1_HTML.jpg


Fig. 1.1
Schematic figures of white thrombi (a) and red thrombi (b)


1.2.1 Formation of Platelet Thrombus


In the maintenance of the vascular system and homeostasis, the endothelial cells, the collagen in the subendothelial tissue, and the tissue factor (TF) are important. In particular, the endothelial cells form tunica intima and have three thromboregulators inhibiting thrombus formation: nitric oxide, prostacyclin, and ectonucleotidase CD39 [2].


1.2.1.1 Two Independent Pathways for Platelet Activation


One is the collagen pathway, and the other is the TF pathway (Fig. 1.2). If the vessel wall is disrupted, the collagen and TF are exposed to the blood, and thrombus formation starts. Collagen facilitates platelet coagulation and activation, while TF initiates thrombin formation, activates the platelets, and changes fibrinogen into fibrin. In the two pathways, either of the two can be dominantly activated depending on the situation, but the result is the same in that the platelets are activated.

A418146_1_En_1_Fig2_HTML.jpg


Fig. 1.2
Mechanism of platelet activation

With regard to the collagen pathway, platelet adhesion occurs through the interaction between the exposed collagen and the glycoprotein VI of the platelet and through the interaction between the von Willebrand factor attached to the collagen and the glycoprotein Ib-V-IX of the platelet. Glycoprotein VI acts as the most important factor in early platelet activation and platelet granule secretion. The platelet activation here is irrelevant to thrombin.

TF causes the formation of the TF pathway, the second most important pathway in early platelet activation. The platelet activation here is irrelevant to the major components of the collagen pathway, the rupture of the vascular endothelial cells, the von Willebrand factor, and glycoprotein VI. Originally, TF has two forms. It is present on the vessel wall in an inactivated or encryptic form, or in an activated form inside the vessel wall. The inactivated TF is activated by protein disulfide isomerase, and such TF forms a complex with factor VIIa, and the complex produces thrombin along the proteolysis pathway while sequentially activating factor IX. Thrombin activates the platelets while decomposing the protease-activated receptor 4 (Par 4 in mouse; Par 1 in human) on the surfaces of the platelets. As a result, adenosine diphosphate (ADP), serotonin, and thromboxane A2 are secreted from the activated platelets. The secreted substances amplify the signal for thrombin formation while activating different platelets sequentially.


1.2.1.2 Propagation of Thrombi Composed of Platelets


The integrin αIIbβ3 of a platelet plays the role of drawing platelet-platelet and platelet-thrombus interactions while being activated. For αIIbβ3 activation, protein disulfide isomerase is necessary. The activation of a platelet attached to the damaged vessel wall promotes a structural change of αIIbβ3 and consequently makes the ligand of αIIbβ3 increase the affinity with fibrinogen or the von Willebrand factor. At a small shear rate, the affinity with fibrinogen is more important, while at a high shear rate, the affinity with the von Willebrand factor is relatively more important. This does not mean, however, that fibrinogen and the von Willebrand factor are absolutely necessary for thrombus formation in this situation. An activated platelet secretes alpha and dense granules. These secretions play a crucial role in thrombus formation. The alpha granule contains various proteins, and the dense granule contains ADP and calcium ion. The ADP secreted through a dense granule facilitates platelet activation more by attaching to the P2Y1 and P2Y12 receptors of the platelet.


1.2.2 Blood Coagulation



1.2.2.1 Contact Activation Pathway (Intrinsic Pathway)


The contact activation pathway begins with the initial complex composition by high-molecular-weight kininogen (HMWK), prekallikrein, and factor XII (Hageman factor) on collagen (Fig. 1.3). As prekallikrein changes to kallikrein, factor XII is activated into XIIa. XIIa changes factor XI into XIa, while XIa changes factor IX into IXa. IXa makes up a tenase complex with a cofactor, factor VIIIa, and this complex activates factor X to Xa. The contact activation pathway in blood coagulation is very strong for coagulation in in vitro studies, but it is not necessary for starting blood coagulation in in vivo studies. The activation of factor XII is very important because it is the starting point of the formation of the contact pathway, and the absence of this factor has been confirmed to mean a very prolonged partial thromboplastin time. Strangely, however, it is not true that patients who do not have this factor have bleeding disorders. Therefore, the importance of factors XII and XI is slightly vague. As it has been confirmed that both factors are associated with thrombus formation in mice, their roles in different biological species may be different. In humans, the pathway is more likely to be associated with inflammation or a congenital immune system rather than with coagulation.

A418146_1_En_1_Fig3_HTML.jpg


Fig. 1.3
Cascades of clotting factor activation: contact activation pathway (or intrinsic pathway), tissue factor pathway (or extrinsic pathway), and common pathway


1.2.2.2 TF Pathway (Extrinsic Pathway)


The TF pathway plays the role of leading an “explosive increase of thrombin,” its most important component, through a feedback mechanism in the entire coagulation pathway. As mentioned earlier, TF is a membrane protein with very complex roles. It is mainly expressed in the fibroblast, in the pericyte in the outer membrane of a vessel, and in the smooth muscle cell of the vessel wall and is often expressed in other cells not related to the blood vessels. TF interacts with several less than 1,000-nm microparticles existing in the blood. During thrombus formation, the platelet is attached to the vessel wall and expresses adhesion molecules called P-selectin while being activated. P-selectin is connected with the microparticles, expressing a receptor called P-selectin glycoprotein ligand 1 (PSGL-1), and causes the microparticles expressing the TF derived from monocytes to be captured in the thrombus. Like this, the TF derived from the blood plays an important role in fibrin extension within the thrombus. As TF performs activities related to blood coagulation only in the activated status, for the inactivated TF (in the latent or encrypted form) existing in the vascular endothelial cells to participate in blood coagulation, the activation process is required. The TF activation mechanism is not clear in molecular biology, but it is thought that as the disulfide bonds in the cysteine within the TF protein are separated, it is activated. These bonds are separated by the aforementioned protein disulfide isomerase and are isolated from the activated endothelial cells or platelets. Therefore, protein disulfide isomerase is involved in both fibrin and platelet thrombus formation.

Among the many blood coagulation factors, the amount of factor VIIa in the blood is greater than those of the other coagulation factors. Factor VII is activated by thrombin, XIa, XII, and Xa, and if the blood vessels are damaged, factor VIIa enters the fibroblasts or monocytes containing TF and makes a complex by binding with TF. This complex activates factors IX and X. The activation of X by a complex can be immediately inhibited by the tissue factor pathway inhibitor (TFPI). Factor Xa and its cofactor, factor Va, form a prothrombinase complex, which converts prothrombin into thrombin. Thrombin affects various coagulation factors, and factors V and VIII are applied to this case. As mentioned earlier, the activated factor VIIIa here acts as a cofactor of factor IXa and makes a tenase complex. As this process is repeated, the thrombin formation process is amplified.


1.2.2.3 Common Pathway


The aforementioned pathway is in fact a result from the laboratory, which measures what is activated by the isolated surface (contact activation pathway) or thromboplastin (a complex of tissue factor and phospholipid). Actually, thrombin exists from the time a platelet is initially coagulated and carries out many functions besides the simple conversion of fibrinogen into fibrin. Thus, it is the most important coagulation factor in blood coagulation. With regard to the function of thrombin, simply put, it activates factors VIII and V, and if thrombomodulin exists, it also activates protein C. Here, the activated protein C inhibits factors VIII and V and compromises the blood coagulation. In addition, by activating factor XIII, it plays the role of cross-linking fibrin monomers into polymers. The common pathway serves to maintain the coagulation trend by continuing to activate factors VIII and IX until they are suppressed by the anticoagulation mechanisms.


1.2.2.4 Cofactor and Modulator


The following components play an important role in maintaining the homeostasis as a whole with the blood coagulation cofactors and modulators. Here, two cofactors and five modulators will be mentioned.


Cofactor

The cofactors include calcium, phospholipid, and vitamin K. Phospholipid, as a component of calcium and the platelet membrane, acts as a cofactor in the function of the tenase and prothrombinase complexes. Besides this, calcium is reported to have a role in the activation of other coagulation factors. Vitamin K is an essential element for an enzyme called hepatic gamma-glutamyl carboxylase attaching a carboxyl group to the glutamic acid residues of factors II, VII, IX, and X and proteins C, S, and Z. In this process, vitamin K itself is oxidized. An enzyme called vitamin K epoxide reductase (VKORC) reverts vitamin K to the activated status. As VKORC is a target substance of warfarin, it is a very important enzyme pharmacologically. By blocking VKORC, warfarin causes vitamin K deficiency and blocks the activation of the coagulation factors.


Modulator

The modulators include protein C, antithrombin, tissue factor pathway inhibitor (TFPI), plasmin, and prostacyclin (PGI2). Protein C is a major anticoagulant in the body and is activated by thrombin, to which the cell surface protein, thrombomodulin, is bonded. Activated protein C decomposes and inactivates factors Va and VIIIa with a cofactor, protein S, and phospholipid. Protein C or S deficiency leads to various forms of thrombosis, including cerebral infarction. Antithrombin is a serine protease inhibitor (serpin) that decomposes thrombin and factors IXa, Xa, XIa, and XIIa, which are serine proteases. It is always in the activated status, and if heparan sulfate exists or if heparin is injected from outside, the effect is enhanced. Also, if there is a deficiency in it, various forms of thrombosis, including cerebral infarction, may occur. As mentioned earlier, the tissue factor pathway inhibitor (TFPI) limits the action of TF. In the liver, plasmin develops through the decomposition of plasminogen. The process is catalyzed by the tissue plasminogen activator (t-PA), which is synthesized and secreted by the vascular endothelial cells. Plasmin decomposes fibrin into the fibrin degradation product (FDP) and inhibits excessive fibrin formation. For the initial treatment of ischemic stroke, the method of injecting recombinant t-PA for thrombolysis is authorized worldwide and is used extensively. Prostacyclin (PGI2) is secreted at the endothelial cells and activates the Gs-protein-linked receptor of the platelet. It sequentially activates adenylyl cyclase and increases the cAMP synthesis. cAMP lowers the calcium level in the cell, suppresses platelet activation, and inhibits the secretion of granules that induce the activation of the secondary platelet/coagulation factor.


1.3 Mechanism of Vascular Occlusion Causing Ischemic Stroke


The classification of ischemic stroke and the mechanisms of thrombus development in the blood have been presented in detail. The reason for the occurrence of acute ischemic stroke, however, is actually that the blood vessel governing the local cerebral region is blocked in an instant. As a lesion that may cause ischemic stroke exists in the blood vessel itself in many cases, it cannot merely be explained with the onset mechanism of thrombus in the blood, and the actual mechanism of occlusion needs to be logically understood. The reason that the blood vessels are occluded is explained differently depending on the TOAST classification, and here, the mechanism of the occurrence of acute occlusion of the blood vessels will be explained in accordance with the classification. Only the mechanisms in large-artery atherosclerosis, small-vessel occlusion, and cardioembolism, however, which account for approximately 70% of the ischemic stroke cases, will be described herein, and the mechanisms of occlusion in other rare etiologies will not be mentioned here.


1.3.1 Mechanism of Occlusion in Large-Artery Atherosclerosis


Atherosclerosis is a chronic inflammatory disease developed by innate and adaptive immunity with the lipids in the artery wall as major components (Fig. 1.4). At first, it is accompanied by dysfunction in the vascular endothelial cells, and as the blood vessels are exposed to excessive lipids (low-density lipoprotein, LDL), the lipids start to accumulate under the intima. If a person is frequently exposed to different risk factors (hypertension, diabetes, smoking, infection, stress, etc.), the damage in endothelial cells becomes severe, and due to the damaged endothelial cells, more LDL cholesterol particles accumulate in the extracellular matrix (ECM), which becomes the place where the damage caused by the oxidation and decomposition enzymes most frequently occurs. The modified LDL activates various inflammatory responses, and its major mechanism is the infiltration of monocytes, which plays the most important role in innate immunity. Also, it is known that adaptive immunity, including the helper T cells (Th1 and Th2) and the antibodies, plays a significant role in the expansion of arteriosclerosis. If monocytes infiltrate and reach the subendothelial region, they are differentiated into macrophage by the macrophage colony-stimulating factor. Macrophage can be differentiated into subtypes with various types and functions according to the environment around it, and such a process is called “polarization.” There are two macrophage subtypes that can be very clearly distinguished from each other depending on the atherosclerosis process, which are known as M1 and M2 (Fig. 1.5). A differentiated macrophage goes through a lipid-containing macrophage while expressing a surface pattern recognition receptor well receiving the modified LDL and changes to a foam cell. As the foam cell secretes cytokines and growth factors, lesions progress, and the vascular smooth muscle cell (VSMC) moves from the media to the intima, where ECM materials, which are important in fibrous cap formation, are produced. In fact, many lipid-containing macrophages are removed by M2 macrophage through the process called “efferocytosis” after initially going through the process of apoptosis. Nevertheless, as macrophage excessively takes apoptosis cells, the endoplasmic reticulum is stressed. Consequently, defects in efferocytosis occur, which isolates the death of the macrophage and lipids, the inflammatory factor, the coagulation factor such as TF, and the matrix metalloproteinases (MMPs). MMP induces the rupture of the atherosclerotic plaque while decomposing the ECM scaffold such as the fibrous cap. The plaque vulnerability is exacerbated as the infiltration of VSMC becomes smaller, and more immature and leaky microvessels occur in the core necrotic plaque.
Sep 23, 2017 | Posted by in NEUROLOGY | Comments Off on Pathophysiology of Ischemic Stroke

Full access? Get Clinical Tree

Get Clinical Tree app for offline access