Sex Differences in Neural Regulation of Hypertension



Fig. 10.1
Summary of sex differences in neural regions of cardiovascular regulation. SFO projections stimulate sympathoexcitatory PVN projections to the IML, as well as indirect projections (dashed line) via the RVLM. The baroreceptor reflex comprises NTS projections to sympathoexcitatory neurons of the RVLM via the CVLM, which in turn project to the IML. ERα (red) is predominant in the SFO and NTS, while ERβ is more common in the PVN and RVLM. Sympathoexcitatory projections from these latter regions to the IML contain ERβ (purple). Baseline sex differences in several brain regions critical for blood pressure regulation involve estrogen receptors anatomically poised to influence pressor responses. In addition, circulating estrogens can affect a variety of regulatory mechanisms





5.2 Conclusions


Understanding the mechanisms underlying sex differences in the neural regulation of blood pressure is critical for new therapies and treatments. Hypertensive therapies for menopausal women are crucial for reducing cardiovascular disease risk since standard treatments are often not sufficient for reducing blood pressure in women, and reduction thresholds may be different in women [150]. Indeed, organizational differences in cardiovascular brain regions between males and females may have important treatment implications following decreased ovarian hormone levels. The protective actions of estrogens from neurovascular-associated diseases such as stroke and AD may be due as much to their prevention of cerebrovascular dysfunction as to any neuroprotection estrogens provide following disease onset. Furthermore, a firm understanding of the role of ovarian hormones in these neural pathways regulating blood pressure will be crucial to developing HRT that is both safe and effective. The role of ovarian hormones in neural regulation of blood pressure may also influence our understanding and treatment of hypertension associated with polycystic ovarian syndrome, during pregnancy, or even in treatment-resistant hypertension in men.



Acknowledgment

Grant Support: NIH grants DA08259, HL098351 (TAM), HL096571 (MJG & TAM), T32 DA007274 (TVK).


References



1.

Dunn KM, Nelson MT. Neurovascular signaling in the brain and the pathological consequences of hypertension. Am J Physiol Heart Circ Physiol. 2014;306:H1–14. doi:10.​1152/​ajpheart.​00364.​2013.PubMedPubMedCentral


2.

Faraco G, Iadecola C. Hypertension: a harbinger of stroke and dementia. Hypertension. 2013;62:810–7. doi:10.​1161/​HYPERTENSIONAHA.​113.​01063.PubMed


3.

Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM, Nelson SA, Nichol G, Orenstein D, Wilson PWF, Woo YJ, American Heart Association Advocacy Coordinating Committee, Stroke Council, Council on Cardiovascular Radiology and Intervention, Council on Clinical Cardiology, Council on Epidemiology and Prevention, Council on Arteriosclerosis, Thrombosis and Vascular Biology, Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation, Council on Cardiovascular Nursing, Council on the Kidney in Cardiovascular Disease, Council on Cardiovascular Surgery and Anesthesia, and Interdisciplinary, Council on Quality of Care and Outcomes Research. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123:933–44. doi:10.​1161/​CIR.​0b013e31820a55f5​.PubMed


4.

Sandberg K, Ji H. Sex differences in primary hypertension. Biol Sex Differ. 2012;3:7. doi:10.​1186/​2042-6410-3-7.PubMedPubMedCentral


5.

Blood pressure tracking over the adult life course: patterns and correlates in the Framingham heart study (2012) Blood pressure tracking over the adult life course: patterns and correlates in the Framingham heart study. 60, 1393–1399. doi:10.1161/HYPERTENSIONAHA.112.201780


6.

Martins D, Nelson K, Pan D, Tareen N, Norris K. The effect of gender on age-related blood pressure changes and the prevalence of isolated systolic hypertension among older adults: data from NHANES III. J Gend Specif Med. 2001;4(3):103.


7.

Burt VL, Cutler JA, Higgins M, Horan MJ, Labarthe D, Whelton P, Brown C, Roccella EJ. Trends in the prevalence, awareness, treatment, and control of hypertension in the adult US population. Data from the health examination surveys, 1960 to 1991. Hypertension. 1995;26:60–9.PubMed


8.

Roger VL, O’Donnell CJ. Population health, outcomes research, and prevention: example of the American Heart Association 2020 goals. Circ Cardiovasc Qual Outcomes. 2012;5:6–8. doi:10.​1161/​CIRCOUTCOMES.​111.​964734.PubMedPubMedCentral


9.

Sadeghi M, Khalili M, Pourmoghaddas M, Talaei M. The correlation between blood pressure and hot flashes in menopausal women. ARYA Atheroscler. 2012;8:32–5.PubMedPubMedCentral


10.

Thurston RC, Christie IC, Matthews KA. Hot flashes and cardiac vagal control during women’s daily lives. Menopause. 2012;19:406–12. doi:10.​1097/​gme.​0b013e3182337166​.PubMedPubMedCentral


11.

Hay M, Xue B, Johnson AK. Yes! sex matters: sex, the brain and blood pressure. Curr Hypertens Rep. 2014;16(8):458. doi:10.​1007/​s11906-014-0458-4.PubMedPubMedCentral


12.

Saranya K, Pal GK, Habeebullah S, Pal P. Assessment of cardiovascular autonomic function in patients with polycystic ovary syndrome. J Obstet Gynaecol Res. 2014;40:192–9. doi:10.​1111/​jog.​12154.PubMed


13.

Hart EC, Charkoudian N, Wallin BG, Curry TB, Eisenach J, Joyner MJ. Sex and ageing differences in resting arterial pressure regulation: the role of the β-adrenergic receptors. J Physiol (Lond). 2011;589:5285–97. doi:10.​1113/​jphysiol.​2011.​212753.


14.

Freedman RR, Kruger ML, Wasson SL. Heart rate variability in menopausal hot flashes during sleep. Menopause. 2011;18:897–900. doi:10.​1097/​gme.​0b013e31820ac941​.PubMedPubMedCentral


15.

de Zambotti M, Colrain IM, Sassoon SA, Nicholas CL, Trinder J, Baker FC. Vagal withdrawal during hot flashes occurring in undisturbed sleep. Menopause. 2013;20:1147–53. doi:10.​1097/​GME.​0b013e31828aa344​.PubMed


16.

Lantto H, Haapalahti P, Tuomikoski P, Viitasalo M, Väänänen H, Sovijärvi ARA, Ylikorkala O, Mikkola TS. Vasomotor hot flashes and heart rate variability. Menopause. 2012;19:82–8. doi:10.​1097/​gme.​0b013e318221bae8​.PubMed


17.

Corbelli J, Shaikh N, Wessel C, Hess R. Low-dose transdermal estradiol for vasomotor symptoms: a systematic review. Menopause. 2014;22:897–900. doi:10.​1097/​GME.​0000000000000258​.


18.

Joffe H, Hall JE, Gruber S, Sarmiento IA, Cohen LS, Yurgelun-Todd D, Martin KA. Estrogen therapy selectively enhances prefrontal cognitive processes: a randomized, double-blind, placebo-controlled study with functional magnetic resonance imaging in perimenopausal and recently postmenopausal women. Menopause. 2006;13:411–22. doi:10.​1097/​01.​gme.​0000189618.​48774.​7b.PubMed


19.

Tuomikoski P, Haapalahti P, Sarna S, Ylikorkala O, Mikkola TS. Vasomotor hot flushes and 24-hour ambulatory blood pressure in normotensive women: a placebo-controlled trial on post-menopausal hormone therapy. Ann Med. 2010;42:334–43. doi:10.​3109/​0785389100379676​0.PubMed


20.

Ji H, Zheng W, Wu X, Liu J, Ecelbarger CM, Watkins R, Arnold AP, Sandberg K. Sex chromosome effects unmasked in angiotensin II-induced hypertension. Hypertension. 2010;55:1275–82. doi:10.​1161/​HYPERTENSIONAHA.​109.​144949.PubMedPubMedCentral


21.

Jessup JA, Wang H, MacNamara LM, Presley TD, Kim-Shapiro DB, Zhang L, Chen AF, Groban L. Estrogen therapy, independent of timing, improves cardiac structure and function in oophorectomized mRen2.Lewis rats. Menopause. 2013;20:860–8. doi:10.​1097/​GME.​0b013e318280589a​.PubMedPubMedCentral


22.

Mayer LP, Dyer CA, Eastgard RL, Hoyer PB, Banka CL. Atherosclerotic lesion development in a novel ovary-intact mouse model of perimenopause. Arterioscler Thromb Vasc Biol. 2005;25:1910–6. doi:10.​1161/​01.​ATV.​0000175767.​46520.​6a.PubMed


23.

Saleh MC, Connell BJ, Saleh TM. Medullary and intrathecal injections of 17beta-estradiol in male rats. Brain Res. 2000;867:200–9.PubMed


24.

Saleh MC, Connell BJ, Saleh TM. Autonomic and cardiovascular reflex responses to central estrogen injection in ovariectomized female rats. Brain Res. 2000;879:105–14.PubMed


25.

Saleh TM, Connell BJ, Saleh MC. Acute injection of 17beta-estradiol enhances cardiovascular reflexes and autonomic tone in ovariectomized female rats. Auton Neurosci. 2000;84:78–88.PubMed


26.

Xue B, Singh M, Guo F, Hay M, Johnson AK. Protective actions of estrogen on angiotensin II-induced hypertension: role of central nitric oxide. Am J Physiol Heart Circ Physiol. 2009;297:H1638–46. doi:10.​1152/​ajpheart.​00502.​2009.PubMedPubMedCentral


27.

Wang G, Milner TA, Speth RC, Gore AC, Wu D, Iadecola C, Pierce JP. Sex differences in angiotensin signaling in bulbospinal neurons in the rat rostral ventrolateral medulla. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1149–57. doi:10.​1152/​ajpregu.​90485.​2008.PubMedPubMedCentral


28.

Cao X, Peterson JR, Wang G, Anrather J, Young CN, Guruju MR, Burmeister MA, Iadecola C, Davisson RL. Angiotensin II-dependent hypertension requires cyclooxygenase 1-derived prostaglandin E2 and EP1 receptor signaling in the subfornical organ of the brain. Hypertension. 2012;59:869–76. doi:10.​1161/​HYPERTENSIONAHA.​111.​182071.PubMedPubMedCentral


29.

Marques Lopes J, Van Kempen TA, Waters EM, Pickel VM, Iadecola C, Milner TA. Slow-pressor angiotensin II hypertension and concomitant dendritic NMDA receptor trafficking in estrogen receptor beta-containing neurons of the mouse hypothalamic paraventricular nucleus are sex and age dependent. J Comp Neurol. 2014. doi:10.​1002/​cne.​23569.PubMedPubMedCentral


30.

Duckles SP, Krause DN. Cerebrovascular effects of oestrogen: multiplicity of action. Clin Exp Pharmacol Physiol. 2007;34:801–8. doi:10.​1111/​j.​1440-1681.​2007.​04683.​x.PubMed


31.

Xue B, Johnson AK, Hay M. Sex differences in angiotensin II- and aldosterone-induced hypertension: the central protective effects of estrogen. Am J Physiol Regul Integr Comp Physiol. 2013;305:R459–63. doi:10.​1152/​ajpregu.​00222.​2013.PubMedPubMedCentral


32.

Xue B, Zhang Z, Beltz TG, Guo F, Hay M, Johnson AK. Estrogen regulation of the brain renin-angiotensin system in protection against angiotensin II-induced sensitization of hypertension. Am J Physiol Heart Circ Physiol. 2014;307:H191–8. doi:10.​1152/​ajpheart.​01012.​2013.PubMedPubMedCentral


33.

Rosas-Arellano PM, Solano-Flores PL, Ciriello J. Co-localization of estrogen and angiotensin receptors within subfornical organ neurons. Brain Res. 1999;837:254–62. doi:10.​1016/​S0006-8993(99)01672-8.PubMed


34.

Spary EJ, Maqbool A, Batten TFC. Oestrogen receptors in the central nervous system and evidence for their role in the control of cardiovascular function. J Chem Neuroanat. 2009;38:185–96. doi:10.​1016/​j.​jchemneu.​2009.​05.​008.PubMed


35.

McEwen B. Estrogen actions throughout the brain. Recent Prog Horm Res. 2002;57:357–84.PubMed


36.

Roepke TA, Qiu J, Bosch MA, Rønnekleiv OK, Kelly MJ. Cross-talk between membrane-initiated and nuclear-initiated oestrogen signalling in the hypothalamus. J Neuroendocrinol. 2009;21:263–70. doi:10.​1111/​j.​1365-2826.​2009.​01846.​x.PubMedPubMedCentral


37.

Roepke TA, Rønnekleiv OK, Kelly MJ. Physiological consequences of membrane-initiated estrogen signaling in the brain. Front Biosci (Landmark Ed). 2011;16:1560–73.PubMedCentral


38.

McEwen BS, Akama KT, Spencer-Segal JL, Milner TA, Waters EM. Estrogen effects on the brain: actions beyond the hypothalamus via novel mechanisms. Behav Neurosci. 2012;126:4–16. doi:10.​1037/​a0026708.PubMedPubMedCentral


39.

Arias-Loza PA, Jazbutyte V, Pelzer T. Genetic and pharmacologic strategies to determine the function of estrogen receptor α and estrogen receptor β in cardiovascular system. Gend Med. 2008;5:S34–45. doi:10.​1016/​j.​genm.​2008.​03.​005.PubMed


40.

Xue B, Pamidimukkala J, Lubahn DB, Hay M. Estrogen receptor-alpha mediates estrogen protection from angiotensin II-induced hypertension in conscious female mice. Am J Physiol Heart Circ Physiol. 2007;292:H1770–6. doi:10.​1152/​ajpheart.​01011.​2005.PubMed


41.

Pedram A, Razandi M, Korach KS, Narayanan R, Dalton JT, Levin ER. ERβ Selective Agonist Inhibits Angiotensin-Induced Cardiovascular Pathology in Female Mice. Endocrinology. 2013;154:4352–64. doi:10.​1210/​en.​2013-1358.PubMed


42.

Brailoiu E, Dun SL, Brailoiu GC, Mizuo K, Sklar LA, Oprea TI, Prossnitz ER, Dun NJ. Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system. J Endocrinol. 2007;193:311–21. doi:10.​1677/​JOE-07-0017.PubMed


43.

Gros R, Ding Q, Sklar LA, Prossnitz EE, Arterburn JB, Chorazyczewski J, Feldman RD. GPR30 expression is required for the mineralocorticoid receptor-independent rapid vascular effects of aldosterone. Hypertension. 2011. doi:10.​1161/​HYPERTENSIONAHA.​110.​161653.PubMed


44.

Sakamoto H, Matsuda K-I, Hosokawa K, Nishi M, Morris JF, Prossnitz ER, Kawata M. Expression of G protein-coupled receptor-30, a G protein-coupled membrane estrogen receptor, in oxytocin neurons of the rat paraventricular and supraoptic nuclei. Endocrinology. 2007;148:5842–50. doi:10.​1210/​en.​2007-0436.PubMed


45.

Akama KT, Thompson LI, Milner TA, McEwen BS. Post-synaptic density-95 (PSD-95) binding capacity of G-protein-coupled receptor 30 (GPR30), an estrogen receptor that can be identified in hippocampal dendritic spines. J Biol Chem. 2013;288:6438–50. doi:10.​1074/​jbc.​M112.​412478.PubMedPubMedCentral


46.

Nilsson B-O, Olde B, Leeb-Lundberg LMF. G protein-coupled oestrogen receptor 1 (GPER1)/GPR30: a new player in cardiovascular and metabolic oestrogenic signalling. Br J Pharmacol. 2011;163:1131–9. doi:10.​1111/​j.​1476-5381.​2011.​01235.​x.PubMedPubMedCentral

Oct 29, 2016 | Posted by in NEUROSURGERY | Comments Off on Sex Differences in Neural Regulation of Hypertension

Full access? Get Clinical Tree

Get Clinical Tree app for offline access