Sleep Disorders



Sleep Disorders


Milena Pavlova



EXCESS DAYTIME SLEEPINESS


Background

Nearly a quarter of healthy adults have excessive daytime sleepiness (EDS). There are many causes including insufficient or ill-timed sleep (i.e., jet lag or voluntary sleep restriction), primary sleep disorders, and medical and neurologic disorders that disrupt sleep or produce pathologic sleep states.


History



  • 1. The typical complaint is of falling asleep unintentionally, causing embarrassment, loss of productivity, and sometimes being hazardous (e.g., while driving).


  • 2. Excessive sleepiness should be distinguished from fatigue and abulia, which have a much wider range of causes. A sleepy patient actually falls asleep, rather than feels unwilling or too weak to engage in activities.


Pathophysiology



  • 1. Major categories of daytime sleepiness are:



    • a. Insufficient or fragmented amount of sleep the night before


    • b. Disorders in sleep drive


  • 2. The drive to sleep is dependent on two separate factors: (a) homeostatic, determined by prior wakefulness and (b) circadian, determined by the individual’s current phase of the circadian rhythm. Under normal conditions, these two factors function synchronously to ensure continuous alertness during the “biological day” and continuous sleep during the “biological night.” The precise timing of sleep in relation to these idealized periods is modulated by ambient light, environmental conditions that promote or impede sleep, medications, and elective or forced wakefulness.


  • 3. Insufficient sleep is the most common cause of excess daytime sleepiness among both adults and children. It can be due to self-inflicted sleep restriction in order to increase productivity, due to other environmental factors, or because the time allotted for sleep is not the time when the drive to sleep is high (circadian misalignment due to jet lag, shift work, or other circadian rhythm disorders). It can lead to both sleepiness, and to other serious consequences, including poor concentration, lack of productivity, as well as putative impairments in immune and metabolic functions.


  • 4. Sleep fragmentation can be due to environmental factors, medical or neurologic diseases, and primary sleep disorders.


  • 5. The majority of individuals need between 7 and 9 hours of sleep. If sleepiness is present even after an adequate amount of sleep, there is an abnormally high sleep drive. This can be due to: (a) medications; (b) medical or neurologic disorders; (c) circadian misalignment (e.g., jet lag); or (d) primary disorders of sleep drive (such as narcolepsy and idiopathic hypersomnia).









TABLE 5-1 Epworth Sleepiness Scale



























































In the last 30 days, how likely were you to doze off or fall asleep in the following situations (in contrast to just feeling tired)


High chance (3)


Moderate chance (2)


Slight chance (1)


Never doze (0)


1. Sitting and reading






2. Watching TV






3. As a passenger in a car for an hour without a break






4. Sitting inactive in a public place (e.g., theater, church)






5. Lying down to rest in the afternoon when circumstances permit






6. In a car while stopped for a few minutes in traffic






7. Sitting quietly after lunch without alcohol






8. Sitting and talking to someone






Total score of more than or equal to 10 indicates clinically important daytime sleepiness.



Diagnosis



  • 1. Sleep quantity is determined by history, sleep logs, and actigraphy. Polysomnography is indicated if a primary sleep disorder is suspected.


  • 2. The Epworth sleepiness scale (Table 5-1) can help quantify the complaint.


  • 3. Sleepiness can be measured by the multiple sleep latency test (MSLT), in which the patient is allowed five nap opportunities, each 2 hours apart, beginning 2 hours after awakening. An average latency to sleep onset of less than 8 minutes across the five naps is indicative of pathologic daytime sleepiness. The appearance of more than one rapid eye movement (REM) period during the MSLT nap indicates REM dysregulation, a result of either sleep loss or narcolepsy.


Treatment and Prognosis



  • 1. Treatment depends on establishing the underlying cause.


  • 2. When sleepiness persists after the underlying cause had been adequately addressed, wake-promoting medications (Table 5-2) can be used.


  • 3. The clinician should discuss the hazards of drowsy driving and other situations for which alertness is crucial for safety. Even healthy individuals tend to underestimate their degree of sleepiness.








TABLE 5-2 Stimulant Medications
























Medication


Daily dose range (mg)


Methylphenidate (Ritalin)


5-80 (divided doses)


Methylphenidate (Ritalin-SR)


20-60 daily


Methylphenidate (Concerta, Metadate, Focalin)


18-54 daily


Dextroamphetamine (Adderall)


5-60 (divided doses)


Dextroamphetamine (Adderal-XR)


20-60


Modafinil (Provigil)


100-400 (daily or twice a day)




EXCESS DAYTIME SLEEPINESS AS A RESULT OF MEDICAL AND NEUROLOGIC DISEASE


Background and Pathophysiology

Numerous neurologic, medical, and psychiatric states and diseases cause sleepiness, either by disrupting the mechanisms involved in sleep homeostasis or by disrupting nighttime sleep. The major causes are:



  • 1. Neurologic causes of sleep fragmentation:



    • a. Abnormal movements: Tremor and inability to shift positions in bed in Parkinson disease, other neurodegenerative conditions.


    • b. Seizures: Either as a cause or as a consequence of fragmented sleep.


    • c. Spasticity: As a result of stroke, spinal cord lesion, multiple sclerosis (MS), or other conditions.


    • d. Nocturia: In MS, diabetes, and other conditions.


    • e. Comorbid primary sleep disorder: Examples include REM behavior disorder, seen in more than one-third of the patient with synucleopathies. Periodic limb movement disorder (PLMD) is commonly seen among patients with peripheral neuropathy, with spinal cord lesions, and with Parkinson disease. Obstructive sleep apnea (OSA) is particularly common in stroke patients, with amyotrophic lateral sclerosis (ALS), and after cervical spinal cord lesions. Patients with postpolio syndrome have an increased risk for both OSA, as well as central sleep apnea (CSA).


  • 2. Medical conditions that prevent or disrupt sleep



    • a. Medications: A detailed description can be found in Table 5-3.


    • b. Pain: Virtually all forms of acute and chronic pain are responsible for poor sleep and subsequent sleepiness. The pain produced by cancer, spondylosis, rheumatologic conditions, fracture, and the postoperative state is common
      and may not be revealed without careful acquisition of the patient’s history. Certain nocturnal pains are, of course, characteristic of serious conditions such as spinal and brain tumor. Skin diseases with itching and gastroesophageal reflux are derivatives of this category.








      TABLE 5-3 Medications Associated With EDS

































      Class of medication


      Common agents


      Notes


      Antidepressant


      Tricyclic antidepressants (amitriptyline, doxepine, etc.)


      Less common with SSRIsa


      Antihistamines


      Brompheniramine, diphenhydramine, hydroxyzine, chlorpheniramine


      Less common with second-generation agents


      Anxiolytics


      Benzodiazepines (diazepam, clonazepam flurazepam, temazepam, etc.)


      Longer-acting agents associated more with daytime sedation


      Antihypertensives


      α-2 agonists (clonidine), α-1 antagonists (prazosin)


      Sedation can be transient


      Antiepileptics


      Gabapentin, topiramate, gabitril, phenytoin, phenobarbital


      Rates have varied in different studies


      Antipsychotics


      Thioridazine, chlorpromazine, quetiapine, clozapine, olanzapine


      May be transient


      a SSRIs, selective serotonin reuptake inhibitors.



    • c. Nocturia: Independent of neurologic conditions, the common problem of prostatism causes frequent nocturnal arising from bed.


    • d. Cardiopulmonary failure: Disrupts sleep as a result of dyspnea, especially if there is orthopnea.


    • e. Psychiatric disorders



      • 1) Anxiety states: Both acute situational and chronic anxiety associated with depression are highly likely to change sleep, mostly with insomnia.


      • 2) Mania: Usually associated with reduced need for sleep but not typically causing secondary daytime sleepiness.


Prognosis



  • 1. Prognosis depends on the underlying cause. It is best for remediable pain, anxiety states, and circadian and environmental disruption that are amenable to simple rectification.


Diagnosis



  • 1. Diagnosis is made by history of one of the above disturbances and by confirming the presence of sleepiness by observation or multiple sleep latency testing.


Treatment



  • 1. The first step of treatment is control of sleep disrupting factors. In patients in whom sleepiness persist thereafter, modafinil can be helpful to control residual sleepiness with minimal side effects. Counseling about driving may be appropriate as well, because episodes of irresistible sleepiness may occur, not preceded by obvious warning.


PRIMARY SLEEP DISORDERS LEADING TO EXCESSIVE SLEEPINESS


Sleep Disordered Breathing


Background



  • 1. Major subtypes include:



    • a. OSA: Characterized by repetitive episodes of pharyngeal collapse during sleep.


    • b. CSA: Characterized by periods of absent respiratory effort. These may occur sporadically or in a cyclic pattern (e.g., Cheyne-Stokes respiration).


    • c. Sleep-related hypoventilation syndromes: Periods of decreased ventilation with profound hypercapnia, most commonly associated with neuromuscular weakness or chest wall abnormalities.


  • 2. Sleep disordered breathing causes daytime sleepiness secondary to fragmentation of sleep and intermittent hypoxia.


History

The patient may present with excessive sleepiness, sleep fragmentation, or in some cases a complaint of insomnia. A bedpartner may report snoring, pauses in breathing, or apparent arousals, manifesting with motor restlessness. Many patients complain of difficulty with concentration and memory, or mood disturbance. Less common complaints include morning headache and sexual difficulties.



Pathophysiology



  • 1. In OSA, there is respiratory obstruction, leading to partial or complete cessation of breathing despite present effort to breathe. The pharyngeal dilator muscle is less active during sleep, and the uvula or tongue or both fall and either partially or completely occlude the airway. Risk factors include obesity, advanced age, male gender, and anatomical features, such as a small airway, retrognathia, and macroglossia.


  • 2. CSA presents with episodes of absent effort to breathe. This can be due to medications that affect the respiratory drive, pathology that affects the medulla (e.g., a Chiari malformation), or idiopathic conditions.


  • 3. CSA of the Cheyne-Stokes type is most commonly seen in patients with systolic congestive heart failure (CHF) but may occur with neurodegenerative disorders.


  • 4. Sleep-related hypoventilation in patients with neuromuscular weakness is exacerbated by sleep-related changes in muscle activation especially during REM sleep when ventilation is primarily maintained by diaphragm activation.


Prognosis



  • 1. The prevalence and severity of OSA increases with age. Increasing data suggest that OSA is also independently associated with cardiovascular diseases such as myocardial infarction and stroke.


  • 2. Prognosis for idiopathic CSA is less well defined.


  • 3. Cheyne-Stokes respirations in patients with CHF are an independent predictor of mortality.


  • 4. Sleep-related hypoventilation in patients with neuromuscular disease is a precursor to daytime respiratory failure.


Diagnosis



  • 1. The gold standard for diagnosis is overnight attended polysomnography. The severity of disease is quantified by the apnea-hypopnea index (number of abnormal respiratory events per hour of sleep) or respiratory disturbance index. By current criteria, severity is classified as follows:



    • a. Less than 5 apneas per hour—normal


    • b. 5 to 20 apneas per hour—mild OSA


    • c. 20 to 40 apneas per hour—moderate OSA


    • d. More than 40 apneas per hour—severe OSA


Treatment



  • 1. Obstructive sleep apnea

    Conservative measures that may improve OSA include weight loss and avoidance of alcohol and sedative medications.



    • a. In some patients, respiratory events occur primarily while sleeping supine. For them, the use of wedge pillows or similar shaped objects in the nightshirt/gown can be used to limit sleep in this position.


    • b. Positive airway pressure (PAP) therapy applied via a nasal mask is the primary modality of therapy. It works as a pneumatic splint, preventing airway collapse. It can be delivered continuously (CPAP) or as bi-level (BiPAP), which provides a lower pressure on expiration from inspiration. It may lead to decreased daytime sleepiness, improved overall function and quality of life, and in some studies it shows lower blood pressure in comparison to placebo.


    • c. Required PAP pressure is determined during a “titration” study that can often be performed during the same night as the diagnostic polysomnogram (split-night study).


    • d. Oral appliances are custom-made mouthpieces that function by advancing the mandible, thus enlarging the pharyngeal airway. They are effective for patients
      with mild-to-moderate OSA, and efficacy ranges from 60% to 80%. Many patients prefer these devices to PAP because of ease of use.


    • e. Surgical therapy of OSA includes minimally invasive procedures (such as radio frequency uvular ablation) and more invasive procedures such as uvulopalatopharyngoplasty (UPPP).


    • f. Success rates for surgery vary depending on the procedure, but for UPPP the success rates are approximately 40% to 50%. g. In a minority of patients whose apnea is adequately treated, EDS remains a significant problem. In these patients the addition of modafinil has been shown to improve symptoms while not substantially reducing CPAP compliance.


  • 2. Central sleep apnea



    • a. Treatment of CSA is substantially more difficult than OSA. Careful review of contributing medications and limiting use of opiates and alcohol are imperative.


    • b. Options for idiopathic CSA include the use of respiratory stimulants such as medroxyprogesterone and BiPAP.


  • 3. Cheyne-Stokes respiration



    • a. If associated with CHF, optimizing therapy for heart failure is the primary therapy (after load reduction, diuretics, β-blockers, etc.). A follow-up study is recommended to confirm that measures have been effective.


    • b. Other available treatments include supplemental oxygen and nasal PAP.


  • 4. Adaptive servoventilation



    • a. Adaptive servoventilation (ASV) is a new method of treatment that uses an automatic, minute ventilation-targeted device that performs breath-to-breath analysis and adjusts its settings accordingly. It is a promising treatment option for patients with CSA. It can also be helpful in treating patients with OSA, who also have central apneas or Cheyne-Stokes respiration.


NARCOLEPSY


Background

Narcolepsy is present in 0.05% of adults (prevalence similar to that of MS). Onset is usually in the second decade of life, but initial appearance of symptoms in the thirties is not uncommon. The mean time between symptom onset and diagnosis is frequently prolonged, due to misdiagnosis.


History

Narcolepsy is characterized by excess daytime sleepiness and dysregulation of REM processes. The classic tetrad includes:

May 28, 2016 | Posted by in NEUROLOGY | Comments Off on Sleep Disorders

Full access? Get Clinical Tree

Get Clinical Tree app for offline access