Cervical Facet Dislocations: A Ventral Surgical Strategy for Decompression, Reduction, and Stabilization

Chapter 94 Cervical Facet Dislocations

A Ventral Surgical Strategy for Decompression, Reduction, and Stabilization

Much controversy surrounds the management of subaxial cervical subluxations resulting from facet fracture-dislocation.111 An initial attempt at closed reduction using skeletal traction is not without risk.1218 The most serious complication of cervical traction and closed reduction is the retropulsion of disc fragments into the spinal canal and resultant spinal cord compression (Fig. 94-1). Several reports of neurologic deterioration after closed reduction in the setting of concurrent disc herniation have been described.1923 In addition, late instability is relatively common in patients treated with closed reduction alone, because of the concomitant presence of significant ligamentous disruption associated with these injuries.

The surgical technique for the open reduction of unstable cervical dislocations varies from surgeon to surgeon. Most reports have described dorsal reduction techniques.20,21,2429 However, the ventral surgical approach for reduction has its advocates.30 Several small series have been published that describe the technique of ventral reduction of locked facets.19,3135 Because of the popularization of dorsal fixation techniques (e.g., lateral mass plating and spinous process wiring), ventral reduction has not been widely used in clinical practice. However, an increasing concern has been raised regarding the danger associated with the dorsal reduction of a cervical spine dislocation in the presence of a ventral disc herniation.19,2124 Furthermore, because of the common coexistence of significant dorsal bony and soft tissue disruption, a three-vertebral segment (two-motion segment) dorsal fixation is commonly required to stabilize a two-vertebral segment (one-motion segment) instability. In addition, in dorsal reduction of locked facets, it is commonly necessary to remove a significant portion of the involved facet(s), thus often mandating a three-vertebral segment dorsal fixation procedure. Conversely, ventral reduction may be followed by arthrodesis of only a single-motion segment, thus sparing additional motion segments from arthrodesis.

Kwon et al.36 concluded that both ventral stabilization and dorsal stabilization for unilateral cervical facet injuries were valid treatment options. In this randomized study of 42 patients with unilateral cervical facet injuries, patients on whom a ventral approach was used had a lower rate of wound infection, had a higher rate of radiographically demonstrated union, and healed in a more lordotic sagittal alignment. However, they also more frequently had signs of dysphagia and voice changes in the early postoperative period in comparison to the group treated with dorsal stabilization. Patients undergoing a ventral approach should be informed of these (and all other) risks.

Surgical Technique


After completion of the discectomy, deformity reduction is attempted. Often, simple distraction is successful, because a potentially significant obstruction to reduction (the disc and anulus fibrosus) has been removed. However, if this maneuver fails, one of two intraoperative maneuvers may be used to facilitate reduction through the ventral approach: the interbody spreader technique or the vertebral body post technique. Failure to use either technique appropriately may result in failure of reduction.

Interbody Spreader Technique

A Cloward interbody spreader, or an equivalent device, is inserted into the disc interspace at a 30- to 40-degree angle (Fig. 94-3A). Failure to place this device at an angle results in achieving only distraction force application (as simple distraction with tongs achieves). This does not result in the application of a bending moment, which is required for reduction with this technique.

While distraction is gradually applied with the disc interspace spreader (applied in the midvertebral body region) (Fig. 94-3B), the spreader is rotated rostrally. This applies a bending moment to the dislocated vertebral body while the facet dislocation is reduced by distraction. If the locked facets are disengaged, the vertebrae should realign. Distraction is then relaxed in the aligned position, and the spreader is removed (Fig. 94-3C).

For bilateral facet dislocations, the intervertebral spreader should be placed in the midvertebral body region. For unilateral dislocations, the spreader should be placed on the side of the dislocation to facilitate the application of a torque about the long axis of the spine via the spreader. Placement of the intervertebral spreader too far ventrally may result in fracture of the end plate.

Vertebral Body Post Technique

If the aforementioned technique fails, the vertebral body post technique may be attempted. This technique uses a vertebral body distractor post. It is important to remember that parallel distraction via the vertebral body posts is equivalent to simple traction, in that these techniques do not apply a bending moment.

The vertebral body post technique usually involves placing the posts at an angle with respect to each other (Fig. 94-4A). This facilitates the application of a bending moment that unlocks the facets before the application of distraction forces (Fig. 94-4B). Distraction should then allow for complete disengagement of the locked facets. Manual reduction via the placement of the dorsally directed pressure on the rostral vertebral body encourages reduction if the facets have been adequately disengaged (Fig. 94-4C). Relaxation of the distraction forces then allows reengagement of the facets in a normal position. The placement of dorsally directed pressure on the rostral vertebral body, as described previously, may also be applied with the interbody spreader technique.

Aug 31, 2016 | Posted by in NEUROLOGY | Comments Off on Cervical Facet Dislocations: A Ventral Surgical Strategy for Decompression, Reduction, and Stabilization
Premium Wordpress Themes by UFO Themes