Genetics of the Epilepsies


Image



CONCLUSION


Genetics plays a role in virtually all epilepsy syndromes, through a diversity of mechanisms. The identification of specific mutations in ion channel subunits has contributed significantly to our knowledge of underlying pathogenic pathways leading to seizures and epilepsy, but clearly, non-ion channel genes are involved. Further work in the identification of gene defects and their functional characterization will continue to advance our understanding of basic mechanisms. Work toward improving phenotype–genotype correlations and delineating the functional significance of both common and rare polymorphisms in “epilepsy genes” will allow us to make better use of genetic testing in epilepsy.


The eventual hope is that understanding the genetics of human epilepsy will improve recognition, diagnosis, and treatment of individuals with epilepsy. In the search for new strategies to reduce the burden of disease, the discovery of epilepsy genetic risk factors offers a novel opportunity to identify individuals susceptible to epilepsy before it develops and to treat and prevent seizures and associated comorbidities in those individuals at risk.


References


1. Annegers JF, Hauser WA, Anderson VE, et al. The risks of seizure disorders among relatives of patients with childhood onset epilepsy. Neurology. 1982;32(2):174179.


2. Ottman R, Annegers JF, Hauser WA, et al. Seizure risk in offspring of parents with generalized versus partial epilepsy. Epilepsia. 1989;30(2):157161.


3. Sillanpaa M, Koskenvuo M, Romanov K, et al. Genetic factors in epileptic seizures: evidence from a large twin population. Acta Neurol Scand. 1991;84(6):523526.


4. Berkovic SF, Howell RA, Hay DA, et al. Epilepsies in twins: genetics of the major epilepsy syndromes. Ann Neurol. 1998;43(4):435445.


5. Kjeldsen MJ, Kyvik KO, Christensen K, et al. Genetic and environmental factors in epilepsy: a population-based study of 11900 Danish twin pairs. Epilepsy Res. 2001;44(2–3):167178.


6. Greenberg DA, Delgado-Escueta AV, Maldonado HM, et al. Segregation analysis of juvenile myoclonic epilepsy. Genet Epidemiol. 1988;5(2):8194.


7. Ottman R, Hauser WA, Barker-Cummings C, et al. Segregation analysis of cryptogenic epilepsy and an empirical test of the validity of the results. Am J Hum Genet. 1997;60(3):667675.


8. Durner M, Keddache MA, Tomasini L, et al. Genome scan of idiopathic generalized epilepsy: evidence for major susceptibility gene and modifying genes influencing the seizure type. Ann Neurol. 2001;49(3):328335.


9. Sander T, Schulz H, Saar K, et al. Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet. 2000;9(10):14651472.


10. Kalamida D, Poulas K, Avramopoulou V, et al. Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J. 2007;274(15):37993845.


11. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007;47:699729.


12. Reid CA, Berkovic SF, Petrou S. Mechanisms of human inherited epilepsies. Prog Neurobiol. 2009;87(1):4157.


13. McLellan A, Phillips HA, Rittey C, et al. Phenotypic comparison of two Scottish families with mutations in different genes causing autosomal dominant nocturnal frontal lobe epilepsy. Epilepsia. 2003;44(4): 613617.


14. Oldani A, Zucconi M, Asselta R, et al. Autosomal dominant nocturnal frontal lobe epilepsy. A video-polysomnographic and genetic appraisal of 40 patients and delineation of the epileptic syndrome. Brain. 1998;121 (Pt 2):205223.


15. Nicita F, De Liso P, Danti FR, et al. The genetics of monogenic idiopathic epilepsies and epileptic encephalopathies. Seizure. 2012;21(1):311.


16. Sansoni V, Forcella M, Mozzi A, et al. Functional characterization of a CRH missense mutation identified in an ADNFLE family. PLoS One. 2013;8(4):e61306.


17. Ohmori I, Ouchida M, Miki T, et al. A CACNB4 mutation shows that altered Ca(v)2.1 function may be a genetic modifier of severe myoclonic epilepsy in infancy. Neurobiol Dis. 2008;32(3):349354.


18. Steinlein OK, Kaneko S, Hirose S. Nicotinic acetylcholine receptor mutations. In: Noebels JL, Avoli M, Rogawski MA, eds. Jasper’s Basic Mechanisms of the Epilepsies [Internet]. 4th ed. National Center for Biotechnology Information (US); 2012.


19. Chen Y, Wu L, Fang Y, et al. A novel mutation of the nicotinic acetylcholine receptor gene CHRNA4 in sporadic nocturnal frontal lobe epilepsy. Epilepsy Res. 2009;83(2–3):152156.


20. Phillips HA, Marini C, Scheffer IE, et al. A de novo mutation in sporadic nocturnal frontal lobe epilepsy. Ann Neurol. 2000;48(2):264267.


21. Picard F, Pegna AJ, Arntsberg V, et al. Neuropsychological disturbances in frontal lobe epilepsy due to mutated nicotinic receptors. Epilepsy Behav. 2009;14(2):354359.


22. Miyajima T, Kumada T, Saito K, et al. Autism in siblings with autosomal dominant nocturnal frontal lobe epilepsy. Brain Dev. 2013;35(2): 155157.


23. Sone D, Sugawara T, Sakakibara E, et al. A case of autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) coexisting with pervasive developmental disorder harboring SCN1A mutation in addition to CHRNB2 mutation. Epilepsy Behav. 2012;25(2):192195.


24. Jacob TC, Moss SJ, Jurd R. GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci. 2008;9(5):331343.


25. Olsen RW, Sieghart W. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology. 2009;56(1):141148.


26. Cossette P, Liu L, Brisebois K, et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet. 2002;31(2):184189.


27. Maljevic S, Krampfl K, Cobilanschi J, et al. A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy. Ann Neurol. 2006;59(6):983987.


28. Dibbens LM, Harkin LA, Richards M, et al. The role of neuronal GABA(A) receptor subunit mutations in idiopathic generalized epilepsies. Neurosci Lett. 2009;453(3):162165.


29. Urak L, Feucht M, Fathi N, et al. A GABRB3 promoter haplotype associated with childhood absence epilepsy impairs transcriptional activity. Hum Mol Genet. 2006;15(16):25332541.


30. Wallace RH, Marini C, Petrou S, et al. Mutant GABA(A) receptor gamma2- subunit in childhood absence epilepsy and febrile seizures. Nat Genet. 2001;28(1):4952.


31. Kananura C, Haug K, Sander T, et al. A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol. 2002;59(7):11371141.


32. Audenaert D, Schwartz E, Claeys KG, et al. A novel GABRG2 mutation associated with febrile seizures. Neurology. 2006;67(4):687690.


33. Sun H, Zhang Y, Liang J, et al. Gene symbol: GABRG2. Disease: generalized epilepsy with febrile seizures plus. Hum Genet. 2008;124(3):298.


34. Dibbens LM, Feng HJ, Richards MC, et al. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet. 2004;13(13):13151319.


35. Deng H, Xiu X, Song Z. The molecular biology of genetic-based epilepsies. Mol Neurobiol. 2014;49(1):352367.


36. Catterall WA, Dib-Hajj S, Meisler MH, et al. Inherited neuronal ion channelopathies: new windows on complex neurological diseases. J Neurosci. 2008;28(46):1176811777.


37. Vacher H, Mohapatra DP, Trimmer JS. Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev. 2008;88(4):14071447.


38. Escayg A, MacDonald BT, Meisler M

Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Apr 17, 2017 | Posted by in NEUROLOGY | Comments Off on Genetics of the Epilepsies

Full access? Get Clinical Tree

Get Clinical Tree app for offline access