Functional neuroanatomy of the basal ganglia

Chapter 3 Functional neuroanatomy of the basal ganglia




Introduction


The basal ganglia comprise a collection of nuclear structures deep in the brain and have been defined anatomically and functionally. Anatomically, the basal ganglia are the deep nuclei in the telencephalon. Functionally, three closely associated structures, the subthalamic nucleus (in the diencephalon), the substantia nigra and pedunculopontine nucleus (both in the mesencephalon), are also included as part of the motor part of the basal ganglia. The definition of which structures are included has varied over the years and depends also in part on a preconceived notion of their function. Most of the time, and for the purposes of the study of movement disorders, the basal ganglia are viewed as having primarily a motor function. Indeed, the early movement disorders included in the concept, such as Parkinson disease (PD) (see Table 3.1 for all abbreviations in this chapter) and Huntington disease (HD), were primarily basal ganglia related, and interested neuroscientists would meet at “basal ganglia clubs.” It is now clear, however, that the basal ganglia also play a role in cognitive, behavioral, and emotional functions. For example, the limbic system interacts extensively with the basal ganglia, and some components of the basal ganglia, such as the amygdala (archistriatum), nucleus accumbens, and ventral pallidum, serve these functions (Haber and Knutson, 2010).


Table 3.1 Abbreviations



































































































































































































AAADC Aromatic L-amino acid decarboxylase
ACh Acetylcholine
AChE Acetylcholinesterase
ADP Adenosine diphosphate
AMPA α-Amino-3-hydroxyl-5-methyl-4-isoxazole-propionate
ATP Adenosine triphosphate
BuChE Butyrylcholinesterase (pseudocholinesterase)
cAMP Cyclic adenosine monophosphate
ChAT Choline acetyltransferase
CM Centrum medianum nucleus of the thalamus
COMT Catechol-O-methyltransferase
DA Dopamine
DAG Diacylglycerol
DAT Dopamine transporter
DBH Dopamine beta-hydroxylase
DBS Deep brain stimulation
DOPAC 3,4-Dihydroxyphenylacetic acid
EAAT Excitatory amino acid transporter
GABA Gamma-amino butyric acid
GABA-T GABA-transaminase
GAD Glutamic acid decarboxylase
GAT GABA transporter
Glu Glutamate
GP Globus pallidus
GPe Globus pallidus externa
GPi Globus pallidus interna
HD Huntington disease
5-HT 5-Hydroxytryptamine, serotonin
5-HTP 5-Hydroxytryptophan
HVA Homovanillic acid
IP3 Inositol triphosphate
LC Locus coeruleus
L-dopa Levodopa
LFP Local field potential
M1 Primary motor cortex
MAO Monoamine oxidase
mAChR Muscarinic acetylcholine receptor
MEA Midbrain extrapyramidal area
MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MRN Median raphe nucleus
3-MT 3-Methoxytyramine (3-O-methydopamine)
nAChR Nicotinic acetylcholine receptor
NE Norepinephrine
NMDA N-methyl-D-aspartic acid
PD Parkinson disease
Pf Parafascicular nucleus of the thalamus
PMv Premotor cortex, ventral division
PPN Pedunculopontine nucleus
PPNc Pedunculopontine nucleus, pars compacta
PPNd Pedunculopontine nucleus, pars dissipatus
SERT Serotonin transporter
SMA Supplementary motor area
SN Substantia nigra
SNc Substantia nigra, pars compacta
SNr Substantia nigra, pars reticulata
STN Subthalamic nucleus
TANs Tonically active neurons
TH Tyrosine hydroxylase
VA Ventral anterior nucleus of thalamus
VAChT Vesicular ACh transporter
VL Ventral lateral nucleus of thalamus
VMAT2 Vesicular monoamine transporter 2
VTA Ventral tegmental area
ZI Zona incerta

The core motor structures of the basal ganglia include the caudate and putamen, collectively called the neostriatum (commonly abbreviated as the striatum), the globus pallidus (GP) (paleostriatum), the subthalamic nucleus (STN), the substantia nigra (SN), and the pedunculopontine nucleus (PPN) (Figs 3.1, 3.2, and 3.3). The putamen and globus pallidus together are sometimes called the lenticular nucleus. The main informational processing loop of the basal ganglia comes from the cortex and goes back to the cortex via the thalamus. The substantia nigra pars compacta (SNc) is largely a modulator of this main loop, with dopamine as its neurotransmitter. Other modulators are the locus coeruleus (LC), with norepinephrine as neurotransmitter, and the median raphe nucleus (MRN), which uses serotonin as neurotransmitter. The notion that the basal ganglia provide an “extrapyramidal” control of movement separate from the cortical-pyramidal control is not correct since the main output of the basal ganglia projects to the cortex. Therefore, the term “extrapyramidal disorders” for disorders arising from dysfunction of the basal ganglia is a misnomer.





In this chapter, we will first consider the neurotransmitters and their receptors that are involved in basal ganglia circuitry. Next, we will consider the main components of the basal ganglia and the way that they interact with each other. At the end, we will review some features of the physiologic activity, and consider what the main functions of the basal ganglia might be.



Neurotransmitters



Dopamine (DA)


It is appropriate to start out the discussion of neurotransmitters with a consideration of dopamine, the most “prominent” neurotransmitter since it is depleted in PD and because we have the means to manipulate this transmitter in therapeutics. The main sources of dopamine are the lateral SNc (A9), the medial ventral tegmental area (VTA, A10), and the retrorubral area (A8) (Fig. 3.2). The SNc innervates the striatum via the nigrostriatal pathway, while the VTA and retrorubal areas give rise to the mesolimbic innervation of the ventral striatum (nucleus accumbens) and the mesocortical innervation of the dorsolateral and ventromedial prefrontal cortex regions (Fig. 3.4) (Van den Heuvel and Pasterkamp, 2008).



DA is formed from levodopa (L-dopa) by the enzyme aromatic L-amino acid decarboxylase (AAADC), which is commonly called dopa decarboxylase (Fig. 3.5) (Stahl, 2008). Once synthesized, DA is taken up into synaptic vesicles by the vesicular monoamine transporter 2 (VMAT2). In vivo, levodopa is synthesized from L-tyrosine by the enzyme tyrosine hydroxylase (TH). L-tyrosine is an essential amino acid in the brain, because it cannot be synthesized from L-phenylalanine, as it can in the rest of the body. DA can be metabolized by monoamine oxidase (MAO) to 3,4-dihydroxyphenylacetic acid (DOPAC), by catechol-O-methyltransferase (COMT) to 3-methoxytyramine (3-MT) (also called 3-O-methydopamine), and by both enzymes serially to homovanillic acid (HVA). MAO exists in two forms, MAO-A and MAO-B, both found in the mitochondria of neurons and glia (Bortolato et al., 2008). COMT is a membrane-bound enzyme (Bonifacio et al., 2007). Physiologically, DA action is terminated by reuptake back into the dopaminergic nerve terminal by action of the dopamine transporter (DAT). Once in the cytosol, it can be taken back up into synaptic vesicles by VMAT2. Dopamine neurons have MAO-A (Demarest et al., 1980), but virtually no COMT. DA not taken up into vesicles will therefore be metabolized to DOPAC. If DA remains non-metabolized in the cytosol, it might contribute to oxidative stress, as discussed in Chapter 5.



DOPAC can diffuse out of the presynaptic terminal where it might confront COMT on the postsynaptic neuron, endothelial cells or possibly glial cells and be converted to HVA. MAO-B is prominent in the basal ganglia, and is largely in glial cells. Any DA not taken up in the presynaptic terminal might diffuse into glial cells (DAT is not necessary in nondopaminergic cells) where it would be converted to HVA. HVA and DOPAC eventually will diffuse out of cells and either into the circulation or into the CSF via the choroid plexus.


The exact biology of DA differs in different parts of the body and even different parts of the brain. For example, in the cerebral cortex there is not much DAT so that after DA release, COMT is much more important in terminating DA action (Matsumoto et al., 2003).


There are five subtypes of dopamine receptors, D1–D5, in two families, D1-like and D2-like (Missale et al., 1998; Beaulieu and Gainetdinov, 2011). The D1-like family, composed of D1 and D5, activates adenyl cyclase and causes conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). Raising the concentration of cAMP is typically excitatory. The D2-like family, composed of D2, D3, and D4, inhibits adenyl cyclase and reduces the concentration of cAMP. Lowering cAMP is typically inhibitory. Some D2 receptors, called autoreceptors, are on the presynaptic side of dopamine synapses, regulating release by negative feedback.



Acetylcholine (ACh)


Cholinergic neurons have two different types of roles (Pisani et al., 2007). One is as an interneuron, and the “giant aspiny interneuron” of the striatum is cholinergic. A second role is as a projection neuron. There are two prominent cholinergic projection systems in the brain. The best known are the neurons of the basal forebrain, such as the nucleus basalis of Meynert, that innervate wide areas of cortex, are involved with functions such as memory, and are deficient in Alzheimer disease. The other is the set of projections from the meso-pontine tegmental complex, which includes the PPN. These are importantly involved in the basal ganglia motor system.


Acetylcholine is synthesized in neurons from choline and acetyl-CoA by the enzyme choline acetyltransferase (ChAT). After synthesis it is collected into vesicles by the enzyme vesicular ACh transporter (VAChT). Once released from the nerve terminals it is broken down by acetylcholinesterase (AChE), which is both pre- and postsynaptic, and butyrylcholinesterase (BuChE), also called pseudocholinesterase, that resides in glia (Cooper et al., 2003; Siegel et al., 2006). The resultant choline is taken back up into the presynaptic cell by a choline transporter (Stahl, 2008).


There are two broad classes of ACh receptors, nicotinic and muscarinic. Nicotinic receptors (nAChR) are ionotropic and are prominent outside the brain at the neuromuscular junction and autonomic ganglia, but are also in the brain (Albuquerque et al., 2009). Activation at an nAChR will open a nonselective cation channel allowing flow of sodium, potassium, and sometimes calcium. Muscarinic receptors (mAChR) are metabotropic and also found both inside and outside the brain. Activation at an mAChR couples to a variety of types of G proteins (Eglen, 2005, 2006). There are many types of nAChR and these are generally described by their subunit composition. Designations of M1–M5 are given to the mAChRs. Both nAChR and mAChR are found in the basal ganglia, and there are both excitatory and inhibitory effects.



Glutamate (Glu)


Glutamate is the primary excitatory neurotransmitter in the brain and as such it has a prominent role in the excitatory cortical-striatal input and in the excitatory projection from the STN to the globus pallidus interna (GPi). Glutamate is a central molecule in many cellular processes, and is also the precursor for the most important inhibitory neurotransmitter in the brain, GABA. Glutamate is made from glutamine in mitochondria by glutaminase. It is then taken up into synaptic vesicles by the vesicular glutamate transporter. Upon release, its action is terminated by its being taken up into glial cells via an excitatory amino acid transporter (EAAT) and then converted to glutamine by glutamine synthetase. Glutamine transporters then move the glutamine from the glial cell into the neuron (Siegel et al., 2006; Stahl, 2008).


Glutamate receptor biology is very complex and the details are well beyond this chapter. There are three groups of metabotropic glutamate receptors, groups I, II, and III, depending on mGluR composition. There are also three classes of ionotropic receptors, α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA), N-methyl-D-aspartic acid (NMDA), and the kainate (KA) receptors. Hence, glutamate not only transmits an excitatory signal by opening calcium channels, but also sets many metabolic processes in action, such as creating short- and long-term changes in synaptic excitability. Such changes are thought to be fundamental in brain plasticity (Lovinger, 2010).



Gamma-amino butyric acid (GABA)


GABA is the main inhibitory neurotransmitter in the brain, and this includes the major inhibitory connections in the basal ganglia. It is synthesized by glutamic acid decarboxylase (GAD) from glutamate. Once synthesized, it is collected into synaptic vesicles by vesicular inhibitory amino acid transporters. After release, its action is terminated by its being taken back into the presynaptic cell by the GABA transporter (GAT). If the nerve ending has too much GABA in it, then it can be broken down by GABA transaminase (GABA-T).


There are three classes of GABA receptors: A, B, and C (Stahl, 2008). GABA-A and GABA-C are ionotropic, and have inhibitory action by opening chloride and potassium channels. There is much known about GABA-A, but only little about GABA-C. GABA-A channels have many subclasses depending on the subunit makeup. An important distinction between subclasses is whether they are sensitive to benzodiazepines or not, depending on whether the benzodiazepines bind to them or not. In the sensitive channels, benzodiazepines can increase the inhibitory action of a GABA-A synapse. GABA-B is a metabotropic receptor (Filip and Frankowska, 2008), and produces a longer duration inhibition than GABA-A by promoting potassium channels and inhibiting calcium channels.



Norepinephrine (NE)


NE influence on the basal ganglia comes from the strong projection to it from the LC. NE is made from DA (in noradrenergic neurons) by the action of dopamine beta-hydroxylase (DBH). After synthesis, it is stored in vesicles by action of VMAT2 (similar to DA). After release, it is taken back up presynaptically by the NE transporter. Like DA, it can be metabolized by MAO-A or MAO-B or COMT, but similar to DA, the main enzyme in the presynaptic terminal is MAO-A.


There are a large number of NE receptors; the different classes are alpha 1A, 1B, 1D, alpha 2A, 2B, 2C, and beta 1, 2 and 3 (Stahl, 2008). All can be postsynaptic, and the alpha 2 receptors can also be presynaptic. Activation of the presynaptic receptors inhibits further NE release. The alpha 1 receptors are G protein coupled, and increase levels of phospholipase C, inositol trisphosphate (IP3), and calcium. The alpha 2 receptors are G protein coupled, with an action to inactivate adenylate cyclase and reduce concentrations of cAMP. The beta receptors couple to G proteins that activate adenylate cyclase and increase cAMP.

Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Aug 5, 2016 | Posted by in NEUROSURGERY | Comments Off on Functional neuroanatomy of the basal ganglia

Full access? Get Clinical Tree

Get Clinical Tree app for offline access