Habit Learning and Addiction



Fig. 16.1
Hypothetical timeline of the temporal interpolation. Figure describes a hypothetical timeline where the major features are defined in a single temporal interpolation from the first drug taking to the addiction. During this time, neurobehavioral changes such as the passage form a goal-directed behavior to an instrumental behavior and a functional dissociation between cognitive/HP-dependent memory and a habit/DS-dependent memory act on the hedonic dysregulation, and on the representation of the value of the drug, drastically inducing the addiction



A growing body of data hypothesizes the possibility of a conceptual framework linking the pathological learning, memory, and drug addiction. Recently, it has been hypothesized that when “habit-like” drug-seeking behavior is firmly acquired, the extinction of such behavior may be differentially influenced by engaging both habit and memory systems. Furthermore, a dissociation has been defined between cognitive (hippocampus-dependent) and habit (DS-dependent) memory systems, during an initial acquisition of learned behavior [8183].

The second question is whether the three features presented above (aberrant motivation, hedonic dysregulation, and aberrant learning) underlying drug-addicted behavior could also be evaluated from a multi-emotional memory system point of view, highlighting a possible major role of aberrant learned associations between drug-associated stimuli and environmental factors, such as stress, driving the maladaptive compulsive seeking/taking behavior that is a main feature of drug addiction. Although there are emergent studies about the possible role of multi-emotional memory systems in drug addiction, little is known about the possible role of “habit memory” in psychopathological behavior characterizing drug addiction.

Finally, taken together, these four theories could contribute to better understanding the psychopathological features of drug addiction, such as the compulsive use of substances of abuse as well as the relapse. Thus, future works could aim to better understand the key elements characterizing the psycho-physio-pathological aspects of drug addiction.




References



1.

United Nations Office on Drug and Crime. World drug report 2014. Vienna: United Nations Publications; 2014.


2.

American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.


3.

Nestler EJ. Molecular mechanisms of opiate and cocaine addiction. Curr Opin Neurobiol. 1997;7(5):​713–9.PubMed


4.

Koob GF, LeMoal M. Drug abuse: hedonic homeostatic dysregulation. Science. 1997;278(5335):52–8.PubMed


5.

Berridge KC. Motivational concepts in behavioral neuroscience. Physiol Behav. 2004;81(2):179–209.PubMed


6.

Robbins TW, Everitt BJ, Nutt DJ. Introduction: the neurobiology of drug addiction: new vistas. Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3109–11. doi:10.​1098/​rstb.​2008.​0108.PubMedPubMedCentral


7.

Darracq L, Blanc G, Glowinski J, Tassin JP. Importance of the noradrenaline-dopamine coupling in the locomotor activating effects of D-amphetamine. J Neurosci. 1998;18(7):2729–39.PubMed


8.

Ventura R, Cabib S, Alcaro A, Orsini C, Puglisi-Allegra S. Norepinephrine in the prefrontal cortex is critical for amphetamine-induced reward and mesoaccumbens dopamine release. J Neurosci. 2003;23(5):​1879–85.PubMed


9.

Ventura R, Alcaro A, Puglisi-Allegra S. Prefrontal cortical norepinephrine release is critical for morphine-induced reward, reinstatement and dopamine release in the nucleus accumbens. Cereb Cortex. 2005;15(12):1877–86.PubMed


10.

Ventura R, Morrone C, Puglisi-Allegra S. Prefrontal/accumbal catecholamine system determines motivational salience attribution to both reward- and aversion-related stimuli. Proc Natl Acad Sci U S A. 2007;104(12):5181–6.PubMedPubMedCentral


11.

Latagliata EC, Patrono E, Puglisi-Allegra S, Ventura R. Food seeking in spite of harmful consequences is under prefrontal cortical noradrenergic control. BMC Neurosci. 2010;11:15. doi:10.​1186/​1471-2202-11-15.PubMedPubMedCentral


12.

Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998;28(3):309–69.PubMed


13.

Adams E, Klug J, Quast M, Stairs DJ. Effects of environmental enrichment on nicotine-induced sensitization and cross-sensitization to d-amphetamine in rats. Drug Alcohol Depend. 2013;129(3):247–53. doi:10.​1016/​j.​drugalcdep.​2013.​02.​019.PubMed


14.

Harb MR, Almeida OFX. Pavlovian conditioning and cross-sensitization studies raise challenges to the hypothesis that overeating is an addictive behavior. Transl Psychiatry. 2014;4:e387. doi:10.​1038/​tp.​2014.​28.PubMedPubMedCentral


15.

Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18(3):247–91.PubMed


16.

Koob GF. Animal models of craving for ethanol. Addiction. 2000;95(Suppl 2):S73–81.PubMed


17.

Parylak SL, Koob GF, Zorrilla EP. The dark side of food addiction. Physiol Behav. 104(1):149–56. doi:10.​1016/​j.​physbeh.​2011.​04.​063.


18.

Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38. doi:10.​1038/​npp.​2009.​110.PubMed


19.

Piazza PV, Deroche-Gamonet V. A multistep general theory of transition to addiction. Psychopharmacology (Berl). 2013;229(3):387–413. doi:10.​1007/​s00213-013-3224-4.


20.

Volkow ND, Wise RA. How can drug addiction help us understand obesity? Nat Neurosci. 2005;8(5):​555–60.PubMed


21.

Volkow ND, Wang GJ, Fowler JS, Telang F. Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3191–200. doi:10.​1098/​rstb.​2008.​0107.PubMedPubMedCentral


22.

Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 2011;15(1):37–46. doi:10.​1016/​j.​tics.​2010.​11.​001.PubMed


23.

Di Chiara G, Imperato A. Drugs abused by humans preferntially increase synaptic dopamine concentrations in the mesolimbico system of freely moving rats. Proc Natl Acad Sci U S A. 1988;85(14):​5274–8.PubMedPubMedCentral


24.

Wise RA, Rompre PP. Brain dopamine and reward. Annu Rev Psychol. 1989;40:191–225.PubMed


25.

Pontieri FE, Tanda G, Di Chiara G. Intravenous cocaine, morphine and amphetaemine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci U S A. 1995;92(26):​12304–8.PubMedPubMedCentral


26.

Koob GF. A role for brain stress systems in addiction. Neuron. 2008;59(1):11–34. doi:10.​1016/​j.​neuron.​2008.​06.​012.PubMedPubMedCentral


27.

Singh T, McDannald MA, Haney RZ, Cerri DH, Schoenbaum G. Nucleus accumbens core and shell are necessary for reinforcer devaluation effects on pavlovian conditioned responding. Front Integr Neurosci. 2010;4:126. doi:10.​3389/​fnint.​2010.​00126.PubMedPubMedCentral


28.

Castro DC, Cole SL, Berridge KC. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci. 2015;9:90. doi:10.​3389/​fnsys.​2015.​00090.PubMedPubMedCentral


29.

Peciňa S, Smith KS, Berridge KC. Hedonic hot spots in the brain. Neuroscientist. 2006;12(6):500–11.PubMed


30.

Puglisi-Allegra S, Ventura R. Prefrontal/accumbal cathecolamine system processes high motivational salience. Front Behav Neurosci. 2012;6:31. doi:10.​3389/​fnbeh.​2012.​00031.PubMedPubMedCentral


31.

Di Marzo V, Ligresti A, Cristino L. The endocannabinoid system as a link between homoeostatic and hedonic pathways involved in energy balance regulation. Int J Obes (Lond). 2009;33(Suppl 2):S18–24. doi:10.​1038/​ijo.​2009.​67.


32.

Jay TM. Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol. 2003;69(6):375–90.PubMed


33.

Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80(1):1–27.PubMed


34.

Torregrosa MM, Gordon J, Taylor JR. Double dissociation between the anterior cingulate cortex and nucleus accumbens core in encoding the context versus the content of pavlovian cocaine cue extinction. J Neurosci. 2013;33(19):8370–7. doi:10.​1523/​JNEUROSCI.​0489-13.​2013.


35.

Saddoris MP, Carelli RM. Cocaine self-administration abolishes associative neural encoding in the nucleus accumbens necessary for higher-order learning. Biol Psychiatry. 2014;75(2):156–64. doi:10.​1016/​j.​biopsych.​2013.​07.​037.PubMed


36.

Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162(8):1403–13.PubMed


37.

Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000;20(6):2369–82.PubMed


38.

Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26(4):317–30.PubMed


39.

Berke JD. Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs. Eur J Neurosci. 2009;30(5):848–59. doi:10.​1111/​j.​1460-9568.​2009.​06843.​x.PubMedPubMedCentral


40.

Ren X, Ferreira JG, Zhou L, Shammah-Lagnado SJ, Jeckel CW, de Araujo IE. Nutrient selection in the absence of taste receptor signaling. J Neurosci. 2010;30(23):8012–23. doi:10.​1523/​JNEUROSCI.​​5749-09.​2010.


41.

Wiltschko AB, Pettibone JR, Berke JD. Opposite effects of stimulant and antipsychotic drugs on striatal fast-spiking interneurons. Neuropsychopharmacology. 2010;35(6):1261–70. doi:10.​1038/​npp.​2009.​226.PubMedPubMedCentral


42.

Meredith GE. The synaptic framework for chemical signaling in nucleus accumbens. Ann N Y Acad Sci. 1999;877:140–56.PubMed

Oct 20, 2017 | Posted by in PSYCHIATRY | Comments Off on Habit Learning and Addiction

Full access? Get Clinical Tree

Get Clinical Tree app for offline access