Nutrition and Central Nervous System



Fig. 35.1
Effect of substances on the central nervous system. The effect of the different substances varies according to the dose and the time of consumption/exposure, as well as with epigenetics, biological rhythm, and the environment. (DHA: docosahexaenoic acid)



Future studies should also examine the deficiencies in other DNA repair processes and the inhibitory effect of diseases linked to metal ions. Understanding how DNA repair deficiency occurs and affects the nervous system could provide a rational basis for therapies in neurodegenerative diseases.



References



1.

Gomez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci. 2008;9:568–78.PubMedPubMedCentral


2.

Simons M, Trajkovic K. Neuron–glia communication in the control of oligodendrocyte function and myelin biogenesis. J Cell Sci. 2006;119:4381–9.PubMed


3.

Kendler KS, Gardner CO, Prescott CA. Toward a comprehensive developmental model for major depression in women. Am J Psychiatry. 2002;159:1133–45.PubMed


4.

Morgan KD, Dazzan P, Orr KG, Hutchinson G, Chitnis X, Suckling J, Lythgoe D, Pollock SJ, Rossell S, Shapleske J, Fearon P, Morgan C, David A, McGuire PK, Jones PB, Leff J, Murray RM. Grey matter abnormalities in first-episode schizophrenia and affective psychosis. B J Psych. 2007;191:s111–6.


5.

Moore JK, Perazzo LM, Braun A. Time course of axonal myelination in the human brainstem auditory pathway. Hear Res. 1995;87:21–31.PubMed


6.

Miller SL, Klurfeld DM, Loftus B, Kritchevsky D. Effect of essential fatty acid deficiency on myelin proteins. Lipids. 1984;19:478–80.PubMed


7.

McKenna MC, Campagnoni AT. Effect of pre- and postnatal essential fatty acid deficiency on brain development and myelination. J Nutr. 1979;109:​1195–204.PubMed


8.

Silvestroff L, Franco PG, Pasquini JM. Neural and oligodendrocyte progenitor cells: transferrin effects on cell proliferation. ASN Neuro. 2013;5(1):e00107. doi:10.​1042/​AN20120075.PubMedPubMedCentral


9.

Kwik-Uribe CL, Gietzen D, German JB, Golub MS, Keen CL. Chronic marginal iron intakes during early development in mice result in persistent changes in dopamine metabolism and myelin composition. J Nutr. 2000;130:2821–30.PubMed


10.

Chen MH, Su TP, Chen YS, Hsu JW, Huang KL, Chang WH, Chen TJ, Bai YM. Association between psychiatric disorders and iron deficiency anemia among children and adolescents: a nationwide population-based study. BMC Psychiatry. 2013;13:161.PubMedPubMedCentral


11.

Nielsen PR, Meyer U, Mortensen PB. Individual and combined effects of maternal anemia and prenatal infection on risk for schizophrenia in offspring. Schizophr Res. 2016;172(1–3):35–40.PubMed


12.

de Escobar GM, Obregon MJ, del Rey FE. Iodine deficiency and brain development in the first half of pregnancy. Public Health Nutr. 2007;10:​1554–70.PubMed


13.

Dussault JH, Ruel J. Thyroid hormones and brain development. Annu Rev Physiol. 1987;49:321–34.PubMed


14.

Kanık-Yuksek S, Aycan Z, Oner O. Evaluation of iodine deficiency in children with attention-deficit/hyperactivity disorder. J Clin Res Pediatr Endicrinol. 2016;8(1):61–6.


15.

Sanchez ES, Bigbee JW, Fobbs W, Robinson SE, Sato-Bigbee C. Opioid addiction and pregnancy: perinatal exposure to buprenorphine affects myelination in the developing brain. Glia. 2009;56(9):1017–27.


16.

Hsu DT, Sanford BJ, Meyers KK, Love TM, Hazlett KE, Walker SJ, Mickey BJ, Koeppe RA, Langenecker SA, Zubieta JK. It still hurts: altered endogenous opioid activity in the brain during social rejection and acceptance in major depressive disorder. Mol Psychiatry. 2015;20(2):193–200.PubMedPubMedCentral


17.

Aston C, Jiang L, Sokolov BP. Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res. 2004;77(6):858–66.PubMed


18.

Barandas R, Landgraf D, McCarthy MJ, Welsh DK. Circadian clocks as modulators of metabolic comorbidity in psychiatric disorders. Curr Psychia Rep. 2015;17(12):98. doi:10.​1007/​s11920-015-0637-2.


19.

Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain — the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013;36(10):587–97.PubMedPubMedCentral


20.

Magistretti PJ, Sorg O, Yu N, Martin JL, Pellerin L. Neurotransmitter regulates energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells. Dev Neurosci. 1993;15:​306–12.PubMed


21.

Brown AM, Baltan Tekkök S, Ransom BR. Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochem Int. 2004;45:529–36.PubMed


22.

Vilchez D, Ros S, Cifuentes D, Pujadas L, Valles J, Garcia-Fojeda B, Criado-Garcia O, Fernandez-Sanchez E, Medraño-Fernández I, Dominguez J, Garcia-Rocha M, Soriano E, Rodriguez de Cordoba S, Guinovart JJ. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci. 2007;10:1407–13.PubMed


23.

Hertz L, Gibbs ME. What learning in day-old chickens can teach a neurochemist: focus on astrocyte metabolism. J Neurochem. 2009;109(s1):10–6.PubMed


24.

Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM. Astrocyte–neuron lactate transport is required for long term memory formation. Cell. 2011;144:810–23.PubMedPubMedCentral


25.

Garcia-Nogales P, Almeida A, Bolaños JP. Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection. JBC. 2003;278:864–74.


26.

Ben-Yoseph O, Boxer PA, Ross BD. Noninvasive assessment of the relative roles of cerebral antioxidant enzymes by quantitation of pentose phosphate pathway activity. Neurochem Res. 1996;21:1005–12.PubMed


27.

Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M. The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci. 2007;27:12255–66.PubMed


28.

Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Kireg PA, Krupenko SA, Thompson WJ, Barres BA. A transcriptome database for astrocytes, neurons and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008;28:264–78.PubMed


29.

Banting FG, Best CH. The internal secretion of the pancreas. J Lab Clin Med. 1922;7:251–66.


30.

Margolis RU, Altszuler N. Insulin in the cerebrospinal fluid. Nature. 1967;215:1375–6.PubMed


31.

Banks WA, Owen JB, Erickson MA. Insulin in the brain: there and back again. Pharmacol Ther. 2012;136:82–93.PubMedPubMedCentral


32.

Havrankova J, Schmechel D, Roth J, Brownstein M. Identification of insulin in rat brain. Proc Natl Acad Sci U S A. 1978;75:5737–41.PubMedPubMedCentral


33.

Dorn A, Bernstein HG, Rinne A, Ziegler M, Hahn HJ, Ansorge S. Insulin- and glucagonlike peptides in the brain. Anat Rec. 1983;207:69–77.PubMed


34.

Duarte AI, Proenca T, Oliveira CR, Santos MS, Rego AC. Insulin restores metabolic function in cultured cortical neurons subjected to oxidative srtress. Diabetes. 2006;55:2863–70.PubMed


35.

Bosco D, Fava A, Plastino M, Montalcini T, Pujia A. Possible implications of insulin resistance and glucose metabolism in Alzheimer s disease pathogenesis. J Cell Mol Med. 2011;17:1807–21.


36.

Tolpannen AM, Lavikainen P, Solomon A, Kivipelto M, Uusitupa M, Soininen H, Hartikainen S. History of medically treated diabetes and risk of Alzheimer disease in a nationwide case-control study. Diabetes Care. 2013;36:2015–9.


37.

Blazquez E, Velasquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: its pathophisiological implications for states related with central insulin resistance, type 2 diabetes and Alzheimer s disease. Front Endocrinol (Lausanne). 2014;5:161. doi:10.​3389/​fendo.​2014.​00161.


38.

O’Brien JS, Sampson EL. Lipid composition of normal human brain: gray matter, white matter, and myelin. J Lipid Res. 1965;6:537–44.PubMed


39.

Salem Jr N, Kim H-Y, Yergey JA. Docosahexaenoic acid: membrane function and metabolism. In: Simopoulos AP, Kiter RR, Martin RE, editors. Health effects of polyunsaturated fatty acids in seafoods. New York: Academic Press; 1986. p. 263–317.


40.

Ikemoto A, Kobayashi T, Watanabe S, Okuyama H. Membrane fatty acid modifications of PC12 cells by arachidonate or docosahexaenoate affect neurite outgrowth but not norepinephrine release. Neurochem Res. 1997;22(6):671–8.PubMed


41.

Bourre JM. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during aging. J Nutr Health Aging. 2004;8:163–74.PubMed


42.

Cook HW. In vitro formation of polyunsaturated fatty acids by desaturation in rat brain: some properties of the enzyme in developing brain and comparison with liver. J Neurochem. 1978;30:1327–34.PubMed


43.

Purvis M, Clandinin MT, Hacker RR. Chain elongation–desaturation of linoleic acid during the development of the pig: implications for the supply of polyenoic fatty acids to the developing brain. Comp Biochem Physiol. 1983;75B:199–204.


44.

Delaš I, Popovic M, Petrovic T, Delaš F, Ivankovic D. Changes in the fatty acid composition of brain and liver phospholipids from rats fed fat-free diet. Food Technol Biotechnol. 2008;3:278–85.


45.

Bourre J-M, Durand G, Pascal G, Youyou A. Brain cell and tissuerecovery in rats made deficient in n-3 fatty acids by alteration of dietary fat. J Nutr. 1989;119:15–22.PubMed


46.

Salem N, Moriguchi T, Greiner RS, et al. Alterations in brain function after loss of docosahexaenoate due to dietary restriction of n-3 fatty acids. J Mol Neurosci. 2001;16:299–307.PubMed


47.

Bourre JM, Francois M, Youyou A, Dumont O, Piciotti M, Pascal G. The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr. 1989b;119:1880–92.PubMed


48.

Bourre JM, Dumont O, Pascal G, Durand G. Dietary alpha linolenic acid at 1.3 g/kg maintains maximal docosahexaenoic acid concentration in brain, heart and liver of adult rats. J Nutr. 1993;123:1313–9.PubMed


49.

Uauy R, Mena P, Rojas C. Essential fatty acids in early life: structural and functional role. Proc Nutr Soc. 2000;59:3–15.PubMed


50.

Morris MC, Tangney CC. Dietary fat composition and dementia risk. Neurobiol Aging. 2014;35(suppl 2):S59–64.PubMed


51.

Appleton KM, Rogers PJ, Ness AR. Updated systematic review and meta-analysis of the effects of n-3 long-chain polyunsaturated fatty acids on depressed mood. Am J Clin Nutr. 2010;91:​757–70.PubMed


52.

Ferreira CF, Bernardi JR, da Silva DC, de Sa C-PN, de Souza MC, Krolow R, Weis SN, Pettenuzzo L, Kapczinski F, Silveira PP, Dalmaz O. Mitochondrial and oxidative stress aspects in hippocampus of rats submitted to dietary n-3 polyunsaturated fatty acid deficiency after exposure to early stress. Neurochem Res. 2015;40:1870–81.PubMed


53.

Grosso G, Galvano F, Marventano S, Malaquarnera M, Bucolo C, Drago F, Caraci F. Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. Oxidative Med Cell Longev. 2014;2014:313570. doi:10.​1155/​2014/​313570.


54.

Glade MJ, Smith K. Phosphatidylserine and the human brain. Nutrition. 2015;31:781–6.PubMed


55.

Perica MM, Delas I. Essential fatty acids and psychiatric disorders. Nutr Clin Pract. 2011;26:409–25.PubMed


56.

Soderberg M, Edlund C, Kristensson K, Dallner G. Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids. 1991;26:​421–5.PubMed


57.

Plourde M, Fortier M, Vandal M, Tremblay-Mercier J, Freemantle E, Begin M, Pifferi F, Cunnane SC. Unresolved issues in the link between docosahexaenoic acid and Alzheimer’s disease. Prostaglandins Leukot Essent Fat Acids. 2007;77:301–8.


58.

Horrocks LA, Farooqui AA. Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fat Acids. 2004;70:361–72.


59.

Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE. Essential fatty acids in visual and brain development. Lipids. 2001;36:885–95.PubMed


60.

Lane RM, Farlow MR. Lipid homeostasis and apolipoprotein E in the development and progression of Alzheimer’s disease. J Lipid Res. 2005;46:949–68.PubMed

Oct 20, 2017 | Posted by in PSYCHIATRY | Comments Off on Nutrition and Central Nervous System

Full access? Get Clinical Tree

Get Clinical Tree app for offline access