Nuclei

9


Nuclei, Functional Components and Distribution of Cranial Nerves


There are 12 pairs of cranial nerves, out of these two pairs arise from the forebrain and 10 pairs from the brainstem (see related text on page 47 and Figs 6.9, 8.1). The cranial nerves are designated by Roman numerals in order from before backwards in which they are attached on to the brain:




It is thought to: (a) provide a special chemosensory pathway of olfaction and affects the secretion of luteinizing hormone releasing factor (LHRF) from hypothalamus, (b) play an important role in smell mediated sex-behaviour.




Functional Columns and Nuclei of Cranial Nerves


A cranial nerve consists of motor fibres (motor nerve) or sensory fibres (sensory nerve) or both motor and sensory fibres (mixed nerve).


The questions on cranial nerve nuclei and their functional components are frequently asked in the examinations. The arrangement of cranial nerve nuclei, and the functional columns they represent are linked with the development of the brain; hence the following text discusses in brief, the development of functional columns and nuclei of cranial nerves.



Development of Functional Columns and Nuclei of Cranial Nerves


During the development of spinal cord due to the appearance of a longitudinal groove (the sulcus limitans), the lateral wall of the neural tube is divided into two parts or laminae: (a) a dorsal alar lamina, and (b) a ventral basal lamina. The cells of basal lamina are motor while those of alar lamina are sensory in function. The cells of each of these two laminae, gets arranged into two longitudinal columns: the somatic and the visceral, the visceral components lying close to the sulcus limitans. Thus, there are four functional components/columns in the lateral wall of the spinal cord from ventral to dorsal side, viz.




During the development of hindbrain two significant events occur: (a) the neural tube widens to form the fourth ventricle, as a result the alar laminae are splayed apart like opening a book, consequently the functional components undergo a directional change from ventrodorsal to mediolateral, and (b) an extra branchial (special) column appears between somatic and visceral columns in both basal and alar laminae to supply the derivatives of pharyngeal arches.


Apart from this, an extra special somatic column appears in the most lateral part of the alar lamina to receive sensations of hearing and balance.


Thus, there are seven functional columns in the brainstem (Fig. 9.1A), from medial to lateral side they are:



image


As the development proceeds, these columns differentiate into one or more discrete cranial nerve nuclei. Nuclei derived from various functional columns are enumerated in Table 9.1 and shown in Figure 9.1B. The surface projection of these nuclei on the dorsal aspect of the brainstem is shown in Figure 9.2.




Thus, in total there are seven functional components to which the fibres of cranial nerve may belong:



• The general somatic efferent fibres arise from the nuclei of general somatic efferent column, and supply the striated muscles of the limbs and body wall developing from somites (‘soma’ = body wall).


• The special visceral (branchial) efferent fibres arise from the nuclei of special visceral (branchial) efferent column and supply the striated muscles developing from branchial or pharyngeal arches, viz. muscles of facial expression, muscles of palate, pharynx and larynx.


• The general visceral efferent fibres arise from the nuclei of general visceral efferent column and supply the glands and the smooth muscles of vessels and viscera. These fibres form the cranial outflow of the parasympathetic nervous system.


• The general visceral afferent fibres carry general sensations (sense of distention and ischaemia) from the viscera, viz. lung, heart and upper part of GIT and associated glands to the general visceral afferent column.


• The special visceral (branchial) afferent fibres carry special sensation of taste from tongue, etc. to the nuclei of special visceral afferent column (this is because the epithelium of tongue including taste buds develop from endoderm (visceral).


• The general somatic afferent fibres carry general sensations (pain, touch and temperature from skin) and proprioceptive sensations (vibration, muscle and joint sense) to the nuclei of general somatic afferent column.


• The special somatic afferent fibres carry special sensations of hearing and equilibrium to the nuclei of special somatic afferent column (this is because the organs concerned with these sensations develop from ectoderm of the body wall).



General Somatic Efferent Nuclei


General somatic efferent nuclei supply the striated muscles of somatic origin.




Trochlear nucleus


Trochlear nucleus is located in the central grey matter of midbrain, ventral to cerebral aqueduct and close to midline at the level of inferior colliculi. It is just caudal to the oculomotor nucleus and its ventral aspect is closely related to medial longitudinal fasciculus. Fibres from each trochlear nucleus course dorsally and then medially around the central grey matter to reach the cranial end of superior medullary velum, wherein they decussate to emerge on the lateral side of frenulum veli on the dorsal aspect of the midbrain (Figs 8.3, 8.12), The trochlear nerve fibres have an unusual course and this is the only nerve which emerges from the dorsal aspect of brainstem. It has been suggested that this nerve originally supplied the muscles of pineal eye, which would account for its dorsal course.




Abducent nucleus


Abducent nucleus is located in the lower part of the pons beneath the facial colliculus in the floor of fourth ventricle, a short distance from the median plane and in line with the nuclei of IIIrd and IVth cranial nerves above, and hypoglossal nerve below. Medial longitudinal fasciculus is closely related to its ventromedial aspect. Fibres from abducent nucleus pass ventrally downwards through the reticular formation intersecting the trapezoid body and medial lemniscus and traversing the basilar part of pons to emerge at the junction of pons and pyramid of medulla. The abducent nerve supplies the lateral rectus muscle of eyeball.


The cells in the reticular formation adjacent to the abducent nucleus constitute a “para-abducent nucleus” which functions as a “centre for lateral gaze.” These cells send fibres to the ipsilateral abducent nucleus and through the medial longitudinal fasciculus, to those cells of contralateral oculomotor nucleus that supply the medial rectus muscle. The actions of medial and lateral recti muscles are thus coordinated in horizontal movements of the eye.




Special Visceral (Branchial) Efferent Nuclei


Special visceral efferent nuclei supply the striated muscles derived from branchial arches.




Nucleus of facial nerve


Nucleus of facial nerve is situated in the lower part of the pons, in the ventrolateral part of its tegmentum, more or less in line with the motor nucleus of the trigeminal nerve. Its position is anterolateral and caudal to abducent nucleus, and medial to the nucleus of spinal tract of trigeminal nerve. The fibres arising from the nucleus pursue an aberrant course. First they course dorsomedially towards the floor of fourth ventricle to loop behind the motor nucleus of the abducent nerve. The loop (internal genu of facial nerve) elevates the floor of fourth ventricle and forms the facial colliculus, and then course ventrolaterally passing between the nucleus of their origin and nucleus of spinal tract of trigeminal nerve to emerge through the pontomedullary junction on the ventral aspect of the brainstem lateral to the emergence of the abducent nerve.


The unusual course of motor fibres of facial nerve represents an example of neurobiotaxis (for details see page 80).




General Visceral Efferent Nuclei


The cells of these nuclei give origin to preganglionic fibres that constitute the cranial parasympathetic outflow. These fibres end in the peripheral parasympathetic ganglia. The postganglionic fibres arising in these ganglia supply smooth muscles or glands.



Edinger-Westphal nucleus (visceral oculomotor nucleus)


Edinger-Westphal nucleus is located in the upper part of the midbrain dorsal to the rostral two-thirds of the main oculomotor nucleus (Fig. 9.5). Preganglionic para-sympathetic fibres arising from this nucleus reach the ciliary ganglion by way of oculomotor nerve, where they terminate.





Dorsal nucleus of vagus (also called motor nucleus of vagus)


Motor nucleus of vagus is a long vertical column of cells extending throughout most of the length of medulla. Its upper end lies deep to the vagal triangle in the floor of the fourth ventricle. When traced downwards in the closed part of medulla, it occupies a position in the lateral part of central grey matter, dorsal to the hypoglossal nucleus (Fig. 8.5). This nucleus is the main source of parasympathetic fibres of vagus nerve.


The dorsal nucleus of vagus is usually described as mixed nucleus representing the fused general visceral efferent and general visceral afferent columns. According to the other school of thought, the general visceral afferent column is incorporated in the special visceral afferent column representing the nucleus of tractus solitarius.



General and Special Visceral Afferent Nuclei


General and special visceral afferent nuclei are represented by only one nucleus, the nucleus of solitary tract.



Nucleus of solitary tract (Fig. 9.3)


Nucleus of solitary tract is an elongated column of cells and is intimately related to a group of descending fibres which constitute the tractus solitarius. The upper part of the nucleus lies deep in the reticular formation, ventrolateral to the dorsal nucleus of vagus (Fig. 8.6). When traced downwards it lies in the dorsal part of central grey matter in the closed part of the medulla, dorsomedial to the dorsal nucleus of vagus (Fig. 8.5). The lower ends of the nuclei of two sides fuse to form the commissural nucleus of the vagus. The rostral portion of the nucleus is concerned with taste sensations and receives the special visceral afferent fibres from facial, glossopharyngeal and vagus nerves and is frequently referred to as gustatory nucleus. The nuclear terminations of VII, IX and X nerves are in rostrocaudal direction (Fig. 9.3). The caudal portion of the nucleus receives the general visceral sensations from pharynx (glossopharyngeal and vagus) and from oesophagus and abdominal part of alimentary canal up to right two-thirds of the transverse colon (vagus). It is presumed that axons from nucleus of tractus solitarius project to the thalamus and hypothalamus of the opposite side through the solitariothalamic and solitariohypothalamic tracts respectively. These tracts join the medial lemniscus of the opposite side on their way to thalamus and hypothalamus. The neurons from thalamus then project to the cerebral cortex (Fig. 9.3).






General Somatic Afferent Nuclei


General somatic afferent nuclei include the three sensory nuclei of the trigeminal nerve.




Spinal nucleus of trigeminal nerve


Spinal nucleus of trigeminal nerve extends caudally from chief sensory nucleus in the pons to the second cervical spinal segment and lies just medial to the spinal tract of trigeminal nerve. The spinal nucleus and tract of trigeminal nerve are chiefly concerned with the pain and temperature sensations. Based on the cytoarchitecture, the spinal nucleus is divided into three parts (or subnuclei): In craniocaudal direction these are: (a) pars rostralis, (b) pars interpolaris, and (c) pars caudalis (Fig. 9.4).


Main afferents of chief sensory and spinal nuclei are the central processes of cells in the trigeminal ganglion (which makes up the large sensory root). After entering the pons many of these processes divide into ascending and descending branches. Others either ascend or descend without being branched.


The ascending fibres end in the chief sensory nucleus. The descending fibres from a large bundle of fibres called spinal tract of trigeminal nerve. Fibres of the spinal tract terminate in the subjacent spinal nucleus. The afferents from three trigeminal divisions rotate, so that the fibres of ophthalmic division terminate in the pars caudalis, the fibres of maxillary division in the pars interpolaris and the fibres of mandibular division in pars rostralis.


As described earlier, the fibres ending in the chief sensory nucleus are predominantly concerned with touch, and those ending in spinal nucleus are concerned predominantly with sensations of pain and temperature.


It is important to note at this juncture that in addition to trigeminal nerve, the spinal tract receives a small component of fibres from the VIIth, IXth and Xth cranial nerves which carry the general somatic sensations from external ear, mucosa of posterior third of tongue, pharynx and larynx.


Fibres arising from cells of chief sensory and spinal nuclei are the second order neurons (comparable to those of the spinothalamic tracts) cross to the opposite side and form a bundle called trigeminal lemniscus which ascends up and relay in the thalamus (ventral posteromedial nucleus) from where third order neurons arise and project to the sensory area of the cerebral cortex.


A separate bundle of more dorsally situated trigeminothalamic fibres (also called dorsal trigeminal lemniscus) is also described.



Mesencephalic nucleus of trigeminal nerve


Mesencephalic nucleus of trigeminal nerve extends from upper end of chief sensory nucleus in the pons to the midbrain where it lies in the central grey matter lateral to the cerebral aqueduct. Because it extends rostrally into the midbrain, it is called mesencephalic nucleus. Like dorsal root ganglia of spinal cord it is made up of pseudounipolar cells (1st order sensory neurons) and appears to have similar functions (the mesencephalic nucleus is unique in the sense that it is the only site in CNS which contains the cell bodies of first order sensory neurons). Peripheral processes of these cells carry proprioceptive impulses from the muscles of mastication, temporomandibular joint, teeth and possibly also from the extrinsic muscles of tongue. Central processes terminate in the motor nuclei of trigeminal nerve of the both sides. These connections establishes the stretch reflex originating in the neuromuscular spindles in masticatory muscles, together with a reflex for control of the force and accuracy of bite (Barr, N.L., 1972). These reflexes prevent the tongue from being bitten during chewing. Other central processes relay in the cells of reticular formation. From which fibres arise and run through dorsal trigeminal lemniscus to relay in the ventral posteromedial nucleus (VPM) of the thalamus (Fig. 9.4).





Special Somatic Afferent Nuclei




Vestibular nuclei


Vestibular nuclei are situated partly in the medulla and partly in the pons, immediately beneath the lateral part of the floor of the fourth ventricle called vestibular area. On the basis of cytoarchitecture and afferent and efferent connections, four distinct vestibular nuclei are recognised, viz. (a) inferior or spinal vestibular nucleus, (b) lateral vestibular nucleus (also called Dieter’s nucleus), (c) superior vestibular nucleus, and (d) medial vestibular nucleus (Fig. 8.15).




• Inferior vestibular nucleus lies in the medulla, just medial to the inferior cerebellar peduncle. It is continuous rostrally with the lateral vestibular nucleus and related medially to the medial vestibular nucleus. It extends from the cranial end of nucleus gracilis to the pontomedullary junction.


• Lateral vestibular nucleus lies immediately cranial to inferior vestibular nucleus and extends upwards in the pons almost to the level of nucleus of abducent nerve. It is composed of large multipolar cells resembling typical motor neurons. The cells of this nucleus give origin to the fibres of lateral vestibulospinal tract (Fig. 8.15).


• Superior vestibular nucleus is smaller in size and located entirely within the pons above the medial and lateral vestibular nuclei.


• Medial vestibular nucleus extends from medulla at the level of olive to the lower part of the pons. It is bounded laterally and rostrally by the other three vestibular nuclei. Its medial border is near the midline of the brainstem. The caudal end of this nucleus is near the caudal limit of the fourth ventricle.

Stay updated, free articles. Join our Telegram channel

Jan 2, 2017 | Posted by in NEUROLOGY | Comments Off on Nuclei

Full access? Get Clinical Tree

Get Clinical Tree app for offline access